三门问题的清晰解读

简介

曾经包括在下定决心写这篇回答试图解释三门问题时,我的观点一直是:

  1. 在开门之前,执行『换门』这一策略中奖的概率是 2 3 2\over3 32
  2. 在最后嘉宾面对两扇门的时候,换与不换概率一定都是 1 2 1\over2 21

但是我也一直疑惑:明明是同一个、连续的过程,究竟是什么地方导致两次的概率不同呢?

直到我真正用笔算的时候才发现,根本不是这样,也正是由于用笔算一次,我才真正弄懂了三门问题。

解答

我们要计算的是: 在主持人开门后,嘉宾换门中奖的概率
解: 设
\qquad 事件 R i : R_i: Ri: 车在第 i i i扇门
\qquad 事件 C i : C_i: Ci: 嘉宾选择第 i i i扇门
\qquad 事件 O i : O_i: Oi: 主持人打开第 i i i扇门

将我们所求的问题转化为集合语言就是计算:
P ( R 3 ∣ C 1 O 2 ) P(R_3|C_1O_2) P(R3C1O2)
由贝叶斯公式,
P ( R 3 ∣ C 1 O 2 ) = P ( O 2 ∣ C 1 R 3 ) P ( C 1 R 3 ) P ( C 1 O 2 ) P(R_3|C_1O_2)={{P(O_2|C_1R_3)P(C_1R_3)}\over{P(C_1O_2)}} P(R3C1O2)=P(C1O2)P(O2C1R3)P(C1R3)
其中,
P ( O 2 ∣ C 1 R 3 ) = 1 P ( C 1 R 3 ) = P ( C 1 ) P ( R 3 ) = 1 3 × 1 3 = 1 9 P ( C 1 O 2 ) = P ( O 2 ∣ C 1 ) ⋅ P ( C 1 ) = ∑ i = 1 3 P ( O 2 R i ∣ C 1 ) ⋅ P ( C 1 ) = ∑ i = 1 3 P ( O 2 ∣ R i C 1 ) ⋅ P ( R i ) ⋅ P ( C 1 ) = 1 3 × 1 3 × ( 1 2 + 0 + 1 ) = 1 6 \displaystyle P(O_2|C_1R_3)=1 \\ P(C_1R_3)=P(C_1)P(R_3)={1\over3} \times {1\over3}={1\over9}\\ \begin{aligned} P(C_1O_2)&=P(O_2|C_1)\cdot P(C_1) \\ &=\sum_{i=1}^3P(O_2R_i|C_1)\cdot P(C_1) \\ &=\sum_{i=1}^3P(O_2|R_iC_1)\cdot P(R_i)\cdot P(C_1) \\ &={1\over3}\times{1\over3}\times({1\over2}+0+1) \\ &={1\over6} \\ \end{aligned} P(O2C1R3)=1P(C1R3)=P(C1)P(R3)=31×31=91P(C1O2)=P(O2C1)P(C1)=i=13P(O2RiC1)P(C1)=i=13P(O2RiC1)P(Ri)P(C1)=31×31×(21+0+1)=61
于是,
P ( R 3 ∣ C 1 O 2 ) = P ( O 2 ∣ C 1 R 3 ) P ( C 1 R 3 ) P ( C 1 O 2 ) = 1 × 1 9 1 6 = 2 3 \begin{aligned} P(R_3|C_1O_2) &={{P(O_2|C_1R_3)P(C_1R_3)}\over{P(C_1O_2)}} \\ &={{1\times {1\over9}}\over{1\over6}} \\ &={2\over3} \end{aligned} P(R3C1O2)=P(C1O2)P(O2C1R3)P(C1R3)=611×91=32

这就是我们要求的答案,即在嘉宾选了一扇门,主持人打开一扇空门后,嘉宾如果 换门 ,中奖的概率是 2 3 2\over3 32
用类似的方法可求得 P ( R 1 ∣ C 1 O 2 ) = 1 3 P(R_1|C_1O_2)={1\over3} P(R1C1O2)=31 对应了不换门时中奖的概率

疑惑

说实话,在我算到这的时候,我实在不敢相信,(前面提到,我认为应该是 1 2 1\over2 21 ),我一度怀疑自己哪里算错了,但经过反复检查,我找不到丝毫问题。
为什么?为什么剩下两扇门时,一个二选一的问题,概率竟然不是对等的?
我重新思考了我们的直觉究竟错在了哪里。
我们的直觉认为,在主持人排除了一扇空门之后,情况简化为嘉宾面对两扇门,且已知车一定在某一扇门里面,所以应该是 1 2 1\over2 21
上面算到的 2 3 2\over3 32 还是不能说服我的直觉,思来想去,我忽然想到计算下面这个式子:

P ( R 1 ∣ O 2 ) = P ( O 2 ∣ R 1 ) P ( R 1 ) P ( O 2 ) P(R_1|O_2)={{P(O_2|R_1)P(R_1)}\over{P(O_2)}} P(R1O2)=P(O2)P(O2R1)P(R1)
其中,
P ( O 2 ∣ R 1 ) = ∑ i = 1 3 P ( C i O 2 ∣ R 1 ) = ∑ i = 1 3 P ( O 2 ∣ C i R 1 ) P ( C i R 1 ) P ( R 1 ) = ( 1 2 × 1 9 + 0 + 1 × 1 9 ) 1 3 = 1 2 \begin{aligned} P(O_2|R_1)&=\sum_{i=1}^3P(C_iO_2|R_1) \\ &=\sum_{i=1}^3{{P(O_2|C_iR_1)P(C_iR_1)}\over{P(R_1)}} \\ &={{({1\over2}\times{1\over9}+0+1\times{1\over9})}\over{1\over3}} \\ &={1\over2} \\ \end{aligned} P(O2R1)=i=13P(CiO2R1)=i=13P(R1)P(O2CiR1)P(CiR1)=31(21×91+0+1×91)=21
P ( O 2 ) = ∑ i = 1 3 P ( C i O 2 ) = 1 6 + 0 + 1 6 = 1 3 \begin{aligned} P(O_2)&=\sum_{i=1}^3P(C_iO_2) \\ &={1\over6}+0+{1\over6} \\ &={1\over3} \end{aligned} P(O2)=i=13P(CiO2)=61+0+61=31
于是,
P ( R 1 ∣ O 2 ) = 1 2 × 1 3 1 3 = 1 2 \displaystyle P(R_1|O_2)={{1\over2}\times{1\over3}\over{1\over3}}={1\over2} P(R1O2)=3121×31=21

这正是我们心心念念的 1 2 \displaystyle {1\over2} 21

结论

对比两个条件概率
P ( R 1 ∣ C 1 O 2 ) = 2 3 P ( R 1 ∣ O 2 ) = 1 2 P(R_1|C_1O_2)={2\over3}\\ P(R_1|O_2)={1\over2} P(R1C1O2)=32P(R1O2)=21
不难发现,我们一直认为的 1 2 1\over2 21 其实是忽略了嘉宾所选的门 C 1 C_1 C1 这一条件而得到的结果,这正是我们的直觉出错的地方。

另外,上述的推导中,隐含了一个设定:主持人选择空门是平等的
即如果嘉宾选择的是车,那么主持人会在剩下两扇空门中随机选择一扇,而不是倾向于开某一扇门,具体可见参考文献1

事实上,以上的数学推导已经包含了对三门问题的完整解释,但可能有人到这仍然会有疑问: C 1 C_1 C1 是如何使概率发生变化的?』

理解&扩展

决定换门中奖的概率是 2 3 2\over3 32 还是 1 2 1\over2 21 的,是 是否知道嘉宾最开始选择的门 ,这是上面两个条件概率告诉我们的。

设想, 嘉宾选择了门1 ,此时分三种等可能情况:

  1. 门1背后是车,那么主持人打开门2的概率应为 1 2 1\over2 21
  2. 门2背后是车,那么主持人打开门2的概率为 0 0 0
  3. 门3背后是车,那么主持人打开门2的概率应为 1 1 1

接着,主持人打开了门2。
由于情况3下主持人开门2的概率更高,而主持人打开的门正是门2,所以我们更 倾向于相信 ,发生的是情况3。

统计学上有一个概念叫 极大似然估计 ,简单地说,这种方法从现象出发,找到『最有可能导致』这一现象发生的一个参数。

举个例子,有一枚硬币,但是不均质,已知投掷这枚硬币正面朝上的概率 p ∈ { 0.3 , 0.8 } p\in\{0.3,0.8\} p{0.3,0.8} ,其中 { 0.3 , 0.8 } \{0.3,0.8\} {0.3,0.8} 称为『参数空间』。意思是概率 p p p 的取值是 0.3 , 0.8 0.3,0.8 0.3,0.8 中的一个。现在要求你判断出 p p p 究竟取哪个值。

很容易想到,投掷很多次,观察硬币正面朝上的次数,如果正面朝上比较多,那就是 0.8 0.8 0.8 ,反之,就是 0.3 0.3 0.3

如果只允许投掷一次呢?其实也很简单,那就看这一次是正面还是反面,如果是正面,我们当然 更相信 会是 0.8 0.8 0.8 ,因为这样的概率是『最可能导致』正面朝上发生的。反之,我们更相信是 0.3 0.3 0.3 。只不过这样判断会出现较大的误差,但也是这一限制条件下的最优抉择。

回过头来看,嘉宾分析了三种情况,得知参数空间是 { 1 2 , 0 , 1 } \{{1\over2},0,1\} {21,0,1} ,其中最可能导致『主持人打开门2』这一现象发生的是 p = 1 p=1 p=1 ,对应情况3,所以,他会换成门3来得到车。

这一切分析都基于 嘉宾选择了门1 ,如果不知道或忽略了这一信息,只看到了主持人打开门2,这时分析得到的参数空间应为 { 1 2 , 0 , 1 2 } \{{1\over2},0,{1\over2}\} {21,0,21} ,既然情况1和情况3下主持人打开门2的概率是一样的,那也就无从判断了,换与不换都一样。

居然写了这么多,哈哈,我也不知道这算不算小题大做,但愿能帮助大家彻底解开三门问题的“心结”。


  1. 何朝葵.基于集合论语言的三门问题的解法[J].高等数学研究,2022,25(01):20-21+33.https://kns.cnki.net/kcms2/article/abstract?v=6oglyc8kNW5MLglkM6oSVpFHLhZZvkr1Br-65YM2yYFRatVcl2tU9Qhw6xtt7olRJVzNZA7cY1iZEQoCDYXf9d8kJTRubQma5H2kxLqN_mybfsDRz34jwIoOgrvZ1SMtpwD5PJK-h2XlMEVwmnMo4d5j6yiIlVbJ&uniplatform=NZKPT ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值