问题描述
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
从标准输入读入一个正整数N (N<1000*1000)
输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例输入1
100
样例输出1
11
样例输入2
105
样例输出2
6
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。
输入格式
从标准输入读入一个正整数N (N<1000*1000)
输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。
注意:不要求输出每个表示,只统计有多少表示法!
样例输入1
100
样例输出1
11
样例输入2
105
样例输出2
6
/*
先枚举整数部分,然后枚举分数部分,假设整数部分为l,那么分数部分为n-l,找一个合适的分母m,即(n-l)*m/m
(n-l)*m没有重复的数字,且(n-l)*m中数字的个数加上m的数字的个数加上l的数字的个数=9
*/
#include <stdio.h>
#include <string.h>
int vis[10];
int vis2[10];
int n;
int ans;
int m,mlen;
bool judgeInt(int x)
{
int len = 0;
while(x)
{
int y = x % 10;
if(vis[y])
return false;
vis[y] = 1;
x/=10;
len++;
}
mlen = 9 - len;
return true;
}
int judge(int x)
{
memcpy(vis2,vis,sizeof(vis2));
int len = 0;
while(x)
{
int y = x % 10;
if(vis2[y])
return false;
vis2[y] = 1;
x /= 10;
len++;
}
return len;
}
void dfs(int x,int len)
{
//分母一定比分子小
if(len <= (mlen/2))
{
if(judge(m * x) == (mlen - len))
{
ans++;
}
for (int i = 1; i < 10; ++i)
{
if(vis[i]) continue;
vis[i] = 1;
dfs(x*10+i,len+1);
vis[i] = 0;
}
}
}
int main()
{
scanf("%d",&n);
ans = 0;
for (int i = 1; i < n; ++i)
{
vis[0] = 1;
if(judgeInt(i))
{
m = n - i;
dfs(0,0);
}
memset(vis,0,sizeof(vis));
}
printf("%d\n",ans);
}