带分数

问题描述
100 可以表示为带分数的形式:100 = 3 + 69258 / 714。
还可以表示为:100 = 82 + 3546 / 197。
注意特征:带分数中,数字1~9分别出现且只出现一次(不包含0)。
类似这样的带分数,100 有 11 种表示法。


输入格式
从标准输入读入一个正整数N (N<1000*1000)


输出格式
程序输出该数字用数码1~9不重复不遗漏地组成带分数表示的全部种数。


注意:不要求输出每个表示,只统计有多少表示法!


样例输入1
100
样例输出1
11


样例输入2
105
样例输出2
6
/*
先枚举整数部分,然后枚举分数部分,假设整数部分为l,那么分数部分为n-l,找一个合适的分母m,即(n-l)*m/m
(n-l)*m没有重复的数字,且(n-l)*m中数字的个数加上m的数字的个数加上l的数字的个数=9
*/
#include <stdio.h>
#include <string.h>

int vis[10];
int vis2[10];
int n;
int ans;
int m,mlen;

bool judgeInt(int x)
{
    int len = 0;
    while(x)
    {
        int y = x % 10;
        if(vis[y])
            return false;
        vis[y] = 1;
        x/=10;
        len++;
    }
    mlen = 9 - len;
    return true;
}

int judge(int x)
{
    memcpy(vis2,vis,sizeof(vis2));
    int len = 0;
    while(x)
    {
        int y = x % 10;
        if(vis2[y])
            return false;
        vis2[y] = 1;
        x /= 10;
        len++;
    }
    return len;
}

void dfs(int x,int len)
{
    //分母一定比分子小
    if(len <= (mlen/2))
    {
        if(judge(m * x) == (mlen - len))
        {
            ans++;
        }
        for (int i = 1; i < 10; ++i)
        {
            if(vis[i]) continue;
            vis[i] = 1;
            dfs(x*10+i,len+1);
            vis[i] = 0;
        }
    }
}

int main()
{
    scanf("%d",&n);
    ans = 0;
    for (int i = 1; i < n; ++i)
    {
        vis[0] = 1;
        if(judgeInt(i))
        {
            m = n - i;
            dfs(0,0);
        }
        memset(vis,0,sizeof(vis));
    }
    printf("%d\n",ans);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值