题目:
给定一个 n×m(n 行 m 列)的矩阵。
设一个矩阵的价值为其所有数中的最大值和最小值的乘积。
求给定矩阵的所有大小为 a×b (a 行 b 列)的子矩阵的价值的和。
答案可能很大,你只需要输出答案对 998244353 取模后的结果。
输入格式
输入的第一行包含四个整数分别表示 n,m,a,b 相邻整数之间使用一个空格分隔。
接下来 n 行每行包含 m 个整数,相邻整数之间使用一个空格分隔,表示矩阵中的每个数 Ai,jAi,j。
输出格式
输出一行包含一个整数表示答案。
数据范围
对于 40% 的评测用例,1≤n,m≤100;
对于 70% 的评测用例,1≤n,m≤500;
对于所有评测用例,1≤a≤n≤1000,1≤b≤m≤1000,1≤Ai,j≤10^9。
输入样例:
2 3 1 2
1 2 3
4 5 6
输出样例:
58
样例解释
1×2+2×3+4×5+5×6=58
思路:
利用单调队列,遍历原矩中的阵每一行,求出每一个数k在范围 i-k>b (i指的是当前该行遍历到的数的序号)里面的最大值与最小值。再根据求出来的单调队列求出每一个子矩阵的最大值与最小值相乘得出结果。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
typedef long long LL;
const int N=1010,MOD=998244353;
int n,m,A,B;
int w[N][N];
int rmax[N][N],rmin[N][N];
int q[N];
void get_max(int a[],int b[],int tot,int k)
{
int hh=0,tt=-1;
for(int i=0;i<tot;i++)//遍历该行的每一个数。
{
if(hh<=tt&&q[hh]<=i-k)hh++;//如果当前队尾不在当前子矩阵的b范围内,移出。
while(hh<=tt&&a[q[tt]]<=a[i])tt--;
q[++tt]=i;
b[i]=a[q[hh]];
}
}
void get_min(int a[],int b[],int tot,int k)//与上面同理
{
int hh=0,tt=-1;
for(int i=0;i<tot;i++)
{
if(hh<=tt&&q[hh]<=i-k)hh++;
while(hh<=tt&&a[q[tt]]>=a[i])tt--;
q[++tt]=i;
b[i]=a[q[hh]];
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&A,&B);
for(int i=0;i<n;i++)
for(int j=0;j<m;j++)
scanf("%d",&w[i][j]);
for(int i=0;i<n;i++)
{
get_max(w[i],rmax[i],m,B);
get_min(w[i],rmin[i],m,B);
}
int res=0;
int a[N],b[N],c[N];
//因为在前0-B-2的范围里求出来的最大值或最小值无意义,
//从b-i开始。rmax[j][i]表示第j行,第i列到第i-b列中的
//最大值
for(int i=B-1;i<=m;i++)
{
for(int j=0; j < n; j ++ ) a[j] = rmax[j][i];
get_max(a,b,n,A);
for(int j= 0; j < n; j ++)a[j] = rmin[j][i];
get_min(a, c, n, A);
//求出每个子矩阵的最大值和最小值后相乘
for(int j=A-1;j<n; j ++ )
res = (res + (LL)b[j]*c[j] )%MOD;
}
printf("%d\n",res);
return 0;
}