Redis

一、 redis概要描述

Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库、缓存和消息中间件。 它支持多种类型的数据结构,如字符串(strings),散列(hashes),列表(lists),集合(sets),有序集合(sorted sets)与范围查询,bitmaps,hyperloglogs和地理空间(geospatial)索引半径查询。 Redis内置了复制(replication),LUA脚本(Lua scripting),LRU驱动事件(LRU eviction),事务(transactions)和不同级别的 磁盘持久化(persistence),并通过Redis哨兵(Sentinel)和自动分区(Cluster)提供高可用性(high availability)。

概要

  1. 速度快 ,单线程,数据储存内存中;
  2. 持久化
  3. 多种数据结构
  4. 支持多种编程语言
  5. 功能丰富
  6. 简单
  7. 主从复制
  8. 高可用 ,分布式。

二、 规范要求

一、键值设计

1、 key 名设计

       (1)【建议】: 可读性和可管理性
             以中心名和服务为前缀 (防止 key 冲突),用冒号分隔,比如:MIDDLEWARE:REDIS:TEST
       (2)【建议】:简洁性
             保证语义的前提下,控制 key 的长度,当 key 较多时,内存占用也不容忽视,例如:
   TRIP:MANAGER:CAR:CACHE:ID{uuid}  简化为:TRIP:MANAGER:CAR:{uuid}
       (3)【强制】:不要包含特殊字符
            反例:包含空格、换行、单双引号以及其他转义字符

2、 value 设计

      (1)【强制】:拒绝 bigkey(防止网卡流量、慢查询)
            string 类型控制在 10KB 以内,hash、list、set、zset 元素个数不要超过 5000。
      (2)【推荐】:选择适合的数据类型。
            例如:实体类型 (要合理控制和使用数据结构内存编码优化配置, 例如 ziplist,但也要注意节省内存和性能之间的平衡)
           反例:
               set user:1:name zhangsan
               set user:1:age 18
           正例:
              hmset user:1 name tom age 18 favor football

3.【推荐】:控制 key 的生命周期,redis 不是垃圾桶。

     建议使用 expire 设置过期时间 (条件允许可以打散过期时间,防止集中过期)。

三、 redis数据结构使用场景

1、 String

常用命令:set、get、incr、decr等等。
String数据结构是最简单得key-value类型,value不仅可以是string也可以是数字。常规key-value缓存应用;计数:粉丝数、点赞数等。

2、 hash

常用命令:hget、hset、hgetall等等。
redis中的hash就跟java的map一样,hash是一个string类型的field和value的映射表,hash被别适合用于存储对象,redis的hash结构可以像在数据库中update一个属性一样只修改某一项属性值。
比如可以直接用hash存储用户信息,在读取过程中就不用序列化对象直接操作。

3、 list

常用命令:lpush、rpush、lpop、rpop、lrange等等。
list就是一个双向链表,支持反向查找遍历。list的应用场景非常多,也是redis最重要的数据结构之一,比如微博的关注列表、粉丝列表等功能都可以使用list结构实现。

4、 set

常用命令:sadd、spop、smembers、sunion等等。
set对外提供的功能与list类似。特殊之处在于set是可以自动排重的。当你需要存储一个列表数据,又不希望数据出现重复,set是一个很好的选择。并且set提供了判断某个成员是否在一个set集合内。
1、 功能好友、共同爱好
2、 利用唯一性可以统计网站的所有独立ip
3、 好友推荐的时候根据tag求交集

5、sorted set

常用命令:zadd、zrange、zrem、zcard等等。
和set相比 sorted set多了一个权重参数score,使得集合中的元素可以按score进行排序。
比如等级排行等。

四、 常见问题

1、 缓存穿透问题

对于系统A,假设一秒 5000 个请求,结果其中 4000 个请求是黑客发出的恶意攻击。黑客发出的那 4000 个攻击,缓存中查不到,每次你去数据库里查,也查不到。
举个例子。数据库 id 是从 1 开始的,结果黑客发过来的请求 id 全部都是负数。这样的话,缓存中不会有,请求每次都“视缓存于无物”,直接查询数据库。这种恶意攻击场景的缓存穿透就会直接把数据库给打死。

在这里插入图片描述

缓存穿透的解决方案

解决方式很简单,每次系统 A 从数据库中只要没查到,就写一个空值到缓存里去,比如 set -999 UNKNOWN。然后设置一个过期时间,这样的话,下次有相同的 key 来访问的时候,在缓存失效之前,都可以直接从缓存中取数据。

2、 缓存雪崩问题

对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了。此时,如果没有采用什么特别的方案来处理这个故障,DBA 很着急,重启数据库,但是数据库立马又被新的流量给打死了。这就是缓存雪崩。
在这里插入图片描述

缓存雪崩的解决方案

• 事前:redis 高可用,主从+哨兵,redis cluster,避免全盘崩溃。
• 事中:本地 ehcache 缓存 + hystrix 限流&降级,避免 MySQL 被打死。
• 事后:redis 持久化,一旦重启,自动从磁盘上加载数据,快速恢复缓存数据。
在这里插入图片描述

用户发送一个请求,系统 A 收到请求后,先查本地 ehcache 缓存,如果没查到再查 redis。如果 ehcache 和 redis 都没有,再查数据库,将数据库中的结果,写入 ehcache 和 redis 中。
限流组件,可以设置每秒的请求,有多少能通过组件,剩余的未通过的请求,怎么办?走降级!可以返回一些默认的值,或者友情提示,或者空白的值。
好处:
• 数据库绝对不会死,限流组件确保了每秒只有多少个请求能通过。
• 只要数据库不死,就是说,对用户来说,2/5 的请求都是可以被处理的。
• 只要有 2/5 的请求可以被处理,就意味着你的系统没死,对用户来说,可能就是点击几次刷不出来页面,但是多点几次,就可以刷出来一次。

3、 缓存击穿问题

缓存击穿,就是说某个 key 非常热点,访问非常频繁,处于集中式高并发访问的情况,当这个 key 在失效的瞬间,大量的请求就击穿了缓存,直接请求数据库,就像是在一道屏障上凿开了一个洞。

缓存击穿问题的解决方案

解决方式也很简单,可以将热点数据设置为永远不过期;或者基于 redis or zookeeper 实现互斥锁,等待第一个请求构建完缓存之后,再释放锁,进而其它请求才能通过该 key 访问数据。

4、 redis回收策略

Redis的内存回收主要分为过期删除策略和内存淘汰策略两部分。

过期删除策略

删除达到过期时间的key。

1、定时删除
对于每一个设置了过期时间的key都会创建一个定时器,一旦到达过期时间就立即删除。该策略可以立即清除过期的数据,对内存较友好,但是缺点是占用了大量的CPU资源去处理过期的数据,会影响Redis的吞吐量和响应时间。

2、惰性删除
当访问一个key时,才判断该key是否过期,过期则删除。该策略能最大限度地节省CPU资源,但是对内存却十分不友好。有一种极端的情况是可能出现大量的过期key没有被再次访问,因此不会被清除,导致占用了大量的内存。
在计算机科学中,懒惰删除(英文:lazy deletion)指的是从一个散列表(也称哈希表)中删除元素的一种方法。在这个方法中,删除仅仅是指标记一个元素被删除,而不是整个清除它。被删除的位点在插入时被当作空元素,在搜索之时被当作已占据。

3、定期删除
每隔一段时间,扫描Redis中过期key字典,并清除部分过期的key。该策略是前两者的一个折中方案,还可以通过调整定时扫描的时间间隔和每次扫描的限定耗时,在不同情况下使得CPU和内存资源达到最优的平衡效果。
在Redis中,同时使用了定期删除和惰性删除。

内存淘汰策略

Redis的内存淘汰策略,是指内存达到maxmemory极限时,使用某种算法来决定清理掉哪些数据,以保证新数据的存入。
Redis的内存淘汰机制
• noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错。
• allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
• allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key。
• volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key。
• volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
• volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。

在配置文件中,通过maxmemory-policy可以配置要使用哪一个淘汰机制。

5、 缓存并发问题

这里的并发指的是多个redis的client同时set key引起的并发问题。其实redis自身就是单线程操作,多个client并发操作,按照先到先执行的原则,先到的先执行,其余的阻塞。

发布了1 篇原创文章 · 获赞 0 · 访问量 44
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览