自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 小肝pytorch一会

博主这几周也是刚刚狂卷完基础的pytorch学习网课了!这里分享一个博主自己写的用于预测分类的RNN简单网络。loss = criterion(outputs,labels) # 计算损失。running_loss += loss.item() # 损失累加。optimizer.zero_grad() # 梯度清零。loss.backward() # 反向传播。# 定义损失函数和优化器(用的是交叉熵和随机梯度下降)# 加载CIFAR10数据集。# 将数据移动到GPU设备上。#在整个数据集上测试网络。

2025-04-14 18:25:07 912

原创 蛮有意思的GAN网络

生成器(Generator)负责生成模拟数据;判别器(Discriminator)负责判断输入的数据是真实的还是生成的。生成器要不断优化自己生成的数据让判别网络判断不出来,判别器也要优化自己让自己判断得更准确。二者关系形成对抗,因此叫对抗网络!让我们看看两位Ian J. Goodfellow等人在Generative Adversarial Networks再原著中的图解吧!由此,我们得到两个深度学习的模型:①生成模型:需要给定某种特征信息,来随机产生新的观测数据。

2025-03-13 16:02:34 637

原创 YOLO算法学习第3天

西部延时,我们开始吧!

2025-03-13 12:31:50 565

原创 YOLO算法学习第2天(摘要+私货)

西部延时,我们开始吧!

2025-03-09 13:16:23 611

原创 YOLO算法学习第1天(摘要+私货)

西部延时,我们开始吧!

2025-03-08 18:15:17 581

原创 小白学习machine learning的第六天

因为有图和树结构等更加复杂的结构是循环神经网络难以招架滴!这里,我们采用一个全新的网络——递归神经网络!这里,原文给出了非常形象的栗子呀!如下图所示:按照上面不同的断句有歧义,因此,我们需要按照给出的树结构才能正确输入数据。

2025-03-04 22:57:20 659

原创 小白学习machine learning的第五天

遗忘门的权重矩阵Wf​和偏置项bf​输入门的权重矩阵Wi​和偏置项bi​输出门的权重矩阵Wo​和偏置项bo​计算单元状态的权重矩阵Wc​和偏置项bc​需要注意的是,每一个门的权重矩阵W的值应当由两个,因为输入向量和上一次的输出向量所乘的权重并不相同呀!原文补充了一点线性代数的公式,即乘以矩阵可看作是乘上对角线上的值。

2025-03-03 11:23:50 1797

原创 小白学习machine learning的第四天

(1)首先,使用循环神经网络而非前面所学习的网络 ——> 需要处理序列相关数据,即相邻输入数据间都存在着相应的关系。

2025-02-28 19:57:01 628

原创 小白学习machine learning的第三天

(1)首先,因为卷积神经网络更加适合图像、语音识别。①参数数量过多:就是一个像素点要一个隐藏层节点,数量太夸张了啊啊啊②像素点的远近相邻关系会被忽略,因为每个节点单独计算,这不是图像识别所需要的呀③全连接神经网络难以深度到3层以后,而神经网络一般越多层提取的特征越多,表达能力也就越强(2)那么,我们来看看卷积神经网络吧!局部连接每个神经元不再和上一层的所有神经元相连,而只和一小部分神经元相连,减少了很多参数。权值共享。

2025-02-26 17:34:15 1976 3

原创 小白学习machine learning的第二天

本篇的启发仍旧是来自下面这篇文章的学习呢!

2025-02-26 14:11:46 1532

原创 小白学习machine learning的第一天

椭圆表示的是函数值的等高线,椭圆中心是函数的最小值点。红色是BGD的逼近曲线,而紫色是SGD的逼近曲线。其实w(i)就是特征:口语化一点就是这个人或者这个产品的出场日期,颜色,喜好,从事IT……然后在用学习速率 * 有梯度的cost function就得到了梯度下降的公式啦!提前声明这篇文章中的图片来源这篇稿子!'''初始化线性单元,设置输入参数的个数'''# 创建感知器,输入参数的特征数为1(工作年限)# 期望的输出列表,月薪,注意要与输入一一对应。'''训练线性单元'''#返回训练好的线性单元。

2025-02-07 18:03:34 678 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除