形态学是一种图像处理技术,它基于图像中物体的形状和结构进行分析和处理。在边缘计算领域,形态学方法广泛应用于目标特征提取,它可以有效地从图像中提取出目标的形态信息,为后续的边缘计算任务提供有价值的特征表示。本文将介绍基于形态学的目标特征提取方法与流程,并给出相应的源代码示例。
形态学操作主要包括腐蚀(erosion)和膨胀(dilation)两种基本操作,它们基于结构元素(structuring element)与输入图像进行卷积运算。腐蚀操作可以使目标区域变小,而膨胀操作则可以使目标区域变大。这两种操作可以通过反复迭代来实现更复杂的形态学处理,如开运算(opening)和闭运算(closing)等。
目标特征提取的一种常用方法是基于形态学的轮廓提取。轮廓是物体的边界线,通过对输入图像进行腐蚀和膨胀操作,可以得到物体的轮廓信息。下面是一个基于形态学的轮廓提取的示例代码:
import cv2
import numpy as np
def