1、
2、 二叉树的子树有___之分,次序___任意颠倒。
3、已知完全二叉树有28个结点,则整个二叉树有(
4、树的度是指树内结点的度。(
5、满二叉树是完全二叉树的特例.(
6、二叉树是树。(
7、已知一棵二叉树中序和先序序列,试写出按后序遍历得到的结点序列。
8、以二叉链表作存储结构,试编写二叉树的高度算法.
9、二叉树是空的,或者由一个根结点和两棵______分别称为左子树和右子树的_____组成。
10、不存在有偶数个结点的满二叉树。(
11、深度为K的二树至多有2k-1-1 结点。(
12、已知一棵二叉树中序和后序序列为分别为:BDCEAFHG和DECBHGFA画出这棵二叉树
13、已知一棵以链表结构存贮的二叉树,如欲从根结点起,由上而下,逐层打印各结点的数据,同一层的结点自左而右打印,试写其算法 (队列的出队和入队算法已知)
14、已知一棵树如图,请回答下列问题:
(1)树的度为多少?结点G的度为多少?
(2)树的深度为多少?哪些是叶子结点?
(3)结点G的祖先有哪些?
(4)结点B的兄弟有哪些?孩子有哪些?
15、哈夫曼树的带权路径长度WPL等于叶子结点的权值之和。(
16、已知二叉树的先序、中序、后序序列分别如下,但其中有一些已模糊不清,构造出该二叉树.
先序:
中序:
后序:
17、由二叉树的先序序列和中序序列能唯一确定一棵二叉树。(
18、在有N(N>0)个结点的二叉链表中,空链域的个数是:_____。
19、树是一种特殊形式的图。(
20、满足下列性质之一的二叉树是否存在?若有举例,若无说明原因:
(1)先序遍历和中序遍历结果相同。
(2)先序遍历和后序遍历结果相同。
(3)中序遍历和后序遍历结果相同。
21、不存在有偶数个结点的完全二叉树。(
22、根据二叉树的定义,二叉树有几种基本形式。图示之。
23、画出图A中森林转化为二叉树及图B中由二叉树转为对应的森林。
24、以二叉链表作存贮结构,试写出中序遍历二叉树的算法。
25、设二叉树以二叉链表存贮,root指向根结点写出中序遍二叉树的非递归算法。
26、递归算法,将二叉树所有结点的左、右子树交换。
27、具有N个结点的完全二叉树的深度为_________。
28、二叉树的结点必须有两棵子树。(
29、何谓哈夫曼树?何谓完全二叉树,它具有哪些特点?
30、深度为K的二叉树,所含叶子的个数最多为_____.
31、存在着这样的二叉树,对它采用任何次序遍历,其结点访问序列均相同。(
32、树和二叉树都是森林。(
33、在一棵非空的树中,有且仅有一个结点没有______,这个结点称为______.
34、已知二叉树的中序和先序序列分别为:
中序序列:DEBAFCHG
先序序列:ABDECFGH
试构造该二叉树
35、度为2的树与二叉树的区别。
36、试编写算法判断两棵二叉树是否等价,称二叉树T1和T2的根结点的值相同,并且T1的左子树与T2的左子树是等价的,T1的右子树和T2的右子树是等价的.
37、结点拥有______称为结点的度。
38、将二叉树变为线索二叉树的过程称为线索化。(
39、具有30个结点的完全二叉树深度为______.
40 、已知一棵度为 m 的树中有 N1 个度为 1 的结点 ,N2 个度为 2 的结点 , 问该树中有多少片叶子 .