1. 树
一种非线性的数据结构,由n(n>=0)个有效结点组成的一个具有层次关系的集合。
树的特点:
(1)有一个特殊的结点,称为根结点,根结点没有前驱结点;
(2)每棵子树的根结点有且只有一个前驱,可以有0个或多个后继;
(3)树是递归定义的。
2.二叉树
一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。
二叉树的特点:
(1)每个结点最多有两棵子树,即二叉树不存在度大于2的结点;
(2)二叉树的子树有左右之分,其子树的次序不能颠倒。
二叉树的性质
(1) 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2+1
(2)对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
- 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
- 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
- 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子
3.满二叉树和完全二叉树
4.二叉树链式结构遍历
(1)前序遍历:根–左子树–右子树;
(2)中序遍历:左子树–根--右子树;
(3)后序遍历:左子树–右子树–根。
5. 二叉树的操作(创建、销毁、结点个数、叶子结点个数、第k层结点个数、查找数据、前序遍历、中序遍历、后序遍历、层次遍历)
#include<stdlib.h>
#include<stdio.h>
typedef char BTDataType;
typedef struct BinaryTreeNode
{
BTDataType _data;
struct BinaryTreeNode* _left;
struct BinaryTreeNode* _right;
}BTNode;
// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi)
{
if (a[*pi] == '#' || *pi >= n)
{
(*pi)++;
return NULL;//空树
}
//当前树的根结点
BTNode* root = (BTNode*)malloc(sizeof(BTNode));
root->_data = a[*pi];
(*pi)++;
root->_left = BinaryTreeCreate(a,n,pi);
root->_right = BinaryTreeCreate(a, n, pi);
return root;
}
// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
if (*root)
{
BinaryTreeDestory(&(*root)->_left);
BinaryTreeDestory(&(*root)->_right);
free(*root);
*root = NULL;
}
}
// 二叉树节点个数 左子树个数+右子树个数+当前结点
int BinaryTreeSize(BTNode* root)
{
if (root == NULL)
return 0;
return BinaryTreeSize(root->_left) + BinaryTreeSize(root->_right) + 1;
}
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
//空树
if (root == NULL)
return 0;
//叶子结点
if (root->_left == NULL && root->_right == NULL)
return 1;
//非叶子
return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}
// 二叉树第k层节点个数 左右子树k-1层结点个数之和
int BinaryTreeLevelKSize(BTNode* root, int k)
{
//空树
if (root == NULL)
return 0;
if (k == 1)
return 1;
return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
if (root)
{
BTNode* node;
if (root->_data == x)
return root;
node = BinaryTreeFind(root->_left, x);
if (node)
return node;
else
return BinaryTreeFind(root->_right, x);
}
else
return NULL;
}
// 二叉树前序遍历 根 左子树 右子树
void BinaryTreePrevOrder(BTNode* root)
{
if (root)
{
printf("%c ", root->_data);
BinaryTreePrevOrder(root->_left);
BinaryTreePrevOrder(root->_right);
}
}
// 二叉树中序遍历 左子树 根 右子树
void BinaryTreeInOrder(BTNode* root)
{
if (root)
{
BinaryTreeInOrder(root->_left);
printf("%c ", root->_data);
BinaryTreeInOrder(root->_right);
}
}
// 二叉树后序遍历 左子树 右子树 根
void BinaryTreePostOrder(BTNode* root)
{
if (root)
{
BinaryTreePostOrder(root->_left);
BinaryTreePostOrder(root->_right);
printf("%c ", root->_data);
}
}
//队尾入队,队头出队
typedef QDataType;
typedef struct QNode
{
struct QNode* _next;
QDataType _data;
}QNode;
// 队列的结构
typedef struct Queue
{
//头尾指针
QNode* _head;
QNode* _tail;
int _size;
}Queue;
struct QNode* creatNode(QDataType val)
{
struct QNode* node = (QNode*)malloc(sizeof(QNode));
node->_data = val;
node->_next = NULL;
}
//初始化
void initQueue(Queue* q)
{
//空队列
if (q == NULL)
return;
q->_head = q->_tail = NULL;
q->_size = 0;
}
void queuePush(Queue* q, QDataType val)
{
struct QNode* node = creatNode(val);
if (q->_head == NULL)
q->_head = q->_tail = node;
else {
q->_tail->_next = node;
q->_tail = node;
}
++q->_size;
}
void queuePop(Queue* q)
{
if (q == NULL || q->_head == NULL)
return;
struct QNode* next = q->_head->_next;
free(q->_head);
q->_head = next;
if (q->_head == NULL)
q->_tail = NULL;
--q->_size;
}
QDataType queueFront(Queue* q)
{
if (q == NULL)
return NULL;
return q->_head->_data;
}
int queueEmpty(Queue* q)
{
return q->_head == NULL;
}
void queueDestroy(Queue* q)
{
QNode* cur = q->_head;
while (cur)
{
QNode* next = cur->_next;
free(cur);
cur = q->_head;
}
}
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root)
{
Queue q;
BTNode* node;
initQueue(&q);
queuePush(&q, root);
while (!queueEmpty(&q))
{
node = queueFront(&q);
printf("%c ", node->_data);
if (node->_left)
{
queuePush(&q, node->_left);
}
if (node->_right)
{
queuePush(&q, node->_right);
}
queuePop(&q);
}
queueDestroy(&q);
}
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root)
{
Queue q;
initQueue(&q);
if (root)
queuePush(&q, root);
while (!queueEmpty(&q))
{
//获取队头元素
BTNode* node = queueFront(&q);
queuePop(&q);
//左右孩子入队
if (node)
{
queuePush(&q, node->_left);
queuePush(&q, node->_right);
}
else
break;
}
while (!queueEmpty(&q))
{
BTNode* node = queueFront(&q);
if (node)
return 0;
}
return 1;
}
void test()
{
char a[] = "ABD##E#H##CF##G##";
int pi = 0;
int n = sizeof(a) / sizeof(a[0]);
BTNode* root = BinaryTreeCreate(a, n, &pi);
printf("size:%d\n", BinaryTreeSize(root));
printf("leafsize:%d\n",BinaryTreeLeafSize(root));
printf("ksize:k=%d: %d\n", 5, BinaryTreeLevelKSize(root, 5));
printf("ksize:k=%d: %d\n", 4, BinaryTreeLevelKSize(root, 4));
printf("ksize:k=%d: %d\n", 3, BinaryTreeLevelKSize(root, 3));
printf("ksize:k=%d: %d\n", 2, BinaryTreeLevelKSize(root, 2));
printf("ksize:k=%d: %d\n", 1, BinaryTreeLevelKSize(root, 1));
BTNode* node;
node = BinaryTreeFind(root, 'E');
BinaryTreePrevOrder(root);
printf("\n");
BinaryTreeInOrder(root);
printf("\n");
BinaryTreePostOrder(root);
printf("\n");
BinaryTreeLevelOrder(root);
BinaryTreeComplete(root);
BinaryTreeDestory(&root);
}
int main()
{
test();
return 0;
}