1、图解法的几种解的情况:唯一最优解、无穷多最优解、无界解、无可行解
2、线性规划问题解的概念:可行解、基、基可行解、可行基
这里面要先明白可行解的概念,毋庸置疑,在方程中满足约束条件的解称为可行解,其中目标函数值达到最大称为最优解;如果有B的系数矩阵是m*m的非奇异矩阵,那么B就是基;满足非负条件的基解,称为基可行解;基可行解的基称为可行基;
下面图解释一下不同解之间的关系:

3、标准化
标准式目标函数为最大值,约束条件为等式、右端项为非负、决策变量取值非负
步骤:
- 如果目标函数为最小min,化成最大max,即令z′= −z,于是得到max z′= −CX
- 约束条件的不等式,若约束条件为“≤”型不等式,则可在不等式左端

本文深入解析线性规划问题,涵盖图解法的多种解情况,如唯一最优解、无穷多最优解、无界解和无可行解。同时,介绍了线性规划问题的基本概念,包括可行解、基、基可行解和可行基。此外,文章还详细说明了如何将非标准形式的线性规划问题转化为标准形式,包括目标函数转换、约束条件调整和变量处理。
最低0.47元/天 解锁文章
3587

被折叠的 条评论
为什么被折叠?



