给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
思路过程:
1.存起来(立马否定
2.”参考“别的大佬代码(orz
解题思路:
1.(特例分析)L = 3 时 aaa --- zzz ,单个位置a ---- z,碰到 z 时本位变回a , 更高一位的字母(a)字母表里 + 1(b)
2. 是不是有点熟悉的感觉,没错,就是进制问题,只不过这里是26进制
如果将a看为1,z看为9,那就转为了我们很熟悉的十进制了,即类似于序列里存着从1,2,3,......,998,999的数字
3.“以 1 为步长递增” ,同10进制一样,都是加到最小一位“满了”就进位
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int l, n;
cin >> l >> n;
int sum = pow(26, l); // 若 l = 3 则每位都有 26 * 26 * 26 = 26 ^ 3 种可能
int k = sum - n; // 倒数第N个 调成正着(第 k 个)比较好理解 1 加了 k 次
char ans[10] = { 0 }; // 答案存入
for (int i = l - 1; i >= 0; i--) // 从最低位开始
{
// 类比 10进位 会很好理解
ans[i] = k % 26 + 'a'; // + 'a' 转成字母
k /= 26; // 进到前一位
}
cout << ans << endl; // 打印
return 0;
}