【c++】L1-050 倒数第N个字符串

给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。

输入格式:

输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。

输出格式:

在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。

输入样例:

3 7417

输出样例:

pat

 思路过程:

1.存起来(立马否定

2.”参考“别的大佬代码(orz

解题思路:

1.(特例分析)L = 3 时 aaa --- zzz ,单个位置a ---- z,碰到 z 时本位变回a , 更高一位的字母(a)字母表里 + 1(b)

2. 是不是有点熟悉的感觉,没错,就是进制问题,只不过这里是26进制

如果将a看为1,z看为9,那就转为了我们很熟悉的十进制了,即类似于序列里存着从1,2,3,......,998,999的数字

3.“以 1 为步长递增” ,同10进制一样,都是加到最小一位“满了”就进位

#include <iostream>
#include <cmath>

using namespace std;

int main()
{
	int l, n;
	cin >> l >> n;
	int sum = pow(26, l);    // 若 l = 3 则每位都有 26 * 26 * 26 = 26 ^ 3  种可能
	int k = sum - n;         // 倒数第N个 调成正着(第 k 个)比较好理解 1 加了 k 次
	char ans[10] = { 0 };   // 答案存入

	for (int i = l - 1; i >= 0; i--)    // 从最低位开始
	{
		// 类比 10进位 会很好理解
		ans[i] = k % 26 + 'a';       // + 'a'  转成字母
		k /= 26;                     // 进到前一位
	}

	cout << ans << endl;     // 打印

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值