RDD-Transformation——filter

原理图

filter的功能是对元素进行过滤,对每个元素应用f函数,返回值为true的元素在RDD中保留,返回为false的将过滤掉。 内部实现相当于生成FilteredRDD(this,sc.clean(f))。

这里写图片描述
图中,每个方框代表一个RDD分区。 T可以是任意的类型。通过用户自定义的过滤函数f,对每个数据项进行操作,将满足条件,返回结果为true的数据项保留。 例如,过滤掉V2、 V3保留了V1,将区分命名为V1’。

源码

/**
 * Return a new RDD containing only the elements that satisfy a predicate.
 */
def filter(f: T => Boolean): RDD[T] = {
  val cleanF = sc.clean(f)
  new MapPartitionsRDD[T, T](
    this,
    (context, pid, iter) => iter.filter(cleanF),
    preservesPartitioning = true)
}

上手使用

scala> var rdd = sc.makeRDD(1 to 10,2)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at <console>:27

scala> rdd.filter(_ >3).collect
res1: Array[Int] = Array(4, 5, 6, 7, 8, 9, 10)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值