无向图的最小环问题 (Floyd算法)

问题描述:

题目传送门


解题思路:

我们首先假设存在这么一个不少于三个点的环,那么他肯定是由这么至少三个点组成的:

  • k k k 点,环中编号最大的点。
  • i i i 点和 j j j 点,图中与 k k k 直接相连的两个不相同的点。

他们的大概结构如图:
在这里插入图片描述
此时,若这三个点共环,那么肯定存在一条 i ∼ j i\sim j ij 的路径,使得 i    − > j i~~->j i  >j

在这里插入图片描述
同时,肯定存在各一条边使得 k    − > i k~~->i k  >i 以及 j    − > k j~~->k j  >k

在这里插入图片描述
知道了环中三点的关系,我们就能通过枚举 k     i     j k~~~i~~~j k   i   j 来求出所有环的大小。
g i , j g_{i,j} gi,j 表示 i i i j j j 的一条直接边的边权。 d i s i , j dis_{i,j} disi,j 表示 i i i j j j 的最短路径。
则有环的大小为: d i s i , j + g k i + g j k dis_{i,j}+g_{k_i}+g_{j_k} disi,j+gki+gjk

我们计算出了所有环的大小,只需要找到一个最小的环即为答案,这一系列过程可以在 F l o y d Floyd Floyd 中实现。

  • 这里有一个值得注意的地方,为什么 i i i j j j 要选与 k k k 相邻的点呢?选与 k k k 之间存在路径的两个点好像也可以吧。其实,若 k k k i i i 的路径中包含了 i    − > j i~~->j i  >j k    − > i k~~->i k  >i 的路径中的任何一点,那么显然这种情况下无法构成环或最优的环。

在这里插入图片描述
为了使环中的路径不经过环中其他路径,我们选择将 i i i j j j 定为与 k k k 相邻的点。

	for(int k=1;k<=n;k++)
	  {
	  	for(int i=1;i<=k-1;i++)  
	  	/*由于固定了k为环中最大的点,显然不能有点大于k的点,
	  	由于floyd的机制,执行到这里dis[i][j]中的最短路显然不会包含比k大的点,符合题目要求*/
	  	  for(int j=i+1;j<=k-1;j++)
	  	    ans=min(ans,dis[i][j]+g[j][k]+g[k][i]);
	  	for(int i=1;i<=n;i++)
	  	  for(int j=1;j<=n;j++)
	  	    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
	  }

CODE:

#include <iostream>
#include <cstring>
using namespace std;
int n,m;
int g[110][110];
int dis[110][110],ans;
int main()
{
	cin>>n>>m;
	int a,b,c;
	memset(dis,0x3f/2,sizeof(dis));
	memset(g,0x3f/2,sizeof(g));
	for(int i=1;i<=m;i++)
	  {
	  	cin>>a>>b>>c;
	  	g[a][b]=g[b][a]=min(g[b][a],c);
	  	dis[a][b]=dis[b][a]=min(dis[b][a],c);
	  }
	ans=0x7ffffff;
	for(int k=1;k<=n;k++)
	  {
	  	for(int i=1;i<=k-1;i++)
	  	  for(int j=i+1;j<=k-1;j++)
	  	    ans=min(ans,dis[i][j]+g[j][k]+g[k][i]);
	  	for(int i=1;i<=n;i++)
	  	  for(int j=1;j<=n;j++)
	  	    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
	  }
	if(ans==0x7ffffff) cout<<"No solution.";
	else cout<<ans;
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值