经典递归问题——汉诺塔

汉诺塔问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。面对庞大的数字(移动圆片的次数)18446744073709551615,看来,众僧们耗尽毕生精力也不可能完成金片的移动。 后来,这个传说就演变为汉诺塔游戏:
  1.有三根杆子A,B,C。A杆上有若干碟子
   2.每次移动一块碟子,小的只能叠在大的上面
   3.把所有碟子从A杆全部移到C杆上
  经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片:
  如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C
  此外,汉诺塔问题也是程序设计中的经典递归问题。
  算法思路:
  1.如果只有一个金片,则把该金片从源移动到目标棒,结束。
  2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒.

#include<bits/stdc++.h>
using namespace std;
void Hn(int n,char a,char b,char c)
{
	if(n==1)
	{
		cout<<a<<" To "<<c<<endl;
		return;
	}
	Hn(n-1,a,c,b);
	cout<<a<<" To "<<c<<endl;
	Hn(n-1,b,a,c);
	return;
}
int main()
{
	int n;
	cin>>n;
	Hn(n,'A','B','C');
	return 0; 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值