尝试运行:目前只能跑通,但不清楚发生了什么
厚德云链接:https://portal.houdeyun.cn/register?from=Datawhale
-
下载baseline相关文件
在终端运行apt install git-lfs git lfs install git clone https://www.modelscope.cn/datasets/Datawhale/AI_Camp5_baseline_CV.git
-
上传提交结果到比赛网站
-
换用yolov9e.pt效果更好
不同yolov8及其区别
原始为
!wget http://mirror.coggle.club/yolo/yolov8n-v8.2.0.pt -O yolov8n.pt
下面任意一个
!wget http://mirror.coggle.club/yolo/yolov8s-v8.2.0.pt -O yolov8s.pt
!wget http://mirror.coggle.club/yolo/yolov8m-v8.2.0.pt -O yolov8m.pt
!wget http://mirror.coggle.club/yolo/yolov8l-v8.2.0.pt -O yolov8l.pt
!wget http://mirror.coggle.club/yolo/yolov8x-v8.2.0.pt -O yolov8x.pt
-
yolov8n (Nano):
- 最小的模型,具有最快的推理速度。
- 适合于边缘设备或资源受限的环境。
- 相对较低的检测精度。
-
yolov8s (Small):
- 较小的模型,相比 Nano 版本提供了更好的检测精度。
- 平衡了模型大小和推理速度。
- 适合于大多数应用场景。
-
yolov8m (Medium):
- 中等大小的模型,提供了较高的检测精度。
- 相对较大的模型大小和较长的推理时间。
- 适合于对精度有一定要求但又不过分消耗资源的应用。
-
yolov8l (Large):
- 较大的模型,提供了更高的检测精度。
- 显著增加了模型大小和推理时间。
- 适合于需要高精度检测的应用。
-
yolov8x (X-Large):
- 最大的模型,提供了最高的检测精度。
- 最大的模型大小和最长的推理时间。
- 适合于对精度有极高要求的应用场景。
之后修改导入的权重文件(.pt)
from ultralytics import YOLO
model = YOLO("yolov8m.pt")
results = model.train(data="yolo-dataset/yolo.yaml", epochs=3, imgsz=1088, batch=8, conf=0.3, mixup=0.5, optimizer="SGD", copy_paste=0.5, mosaic=0,augment=True)
Baseline 进阶
1.增加训练的数据集,可以增加更多的视频到训练集中进行训练。
2.可不断调整置信度conf的值,寻找合适的范围0.15也行
过程发现 :1.换用yolov9e.pt效果更好,但注意yolov8的用法有些不同,需要对源代码进行修改