Datawhale AI夏令营----2024“大运河杯”学习笔记

 尝试运行:目前只能跑通,但不清楚发生了什么

厚德云链接:https://portal.houdeyun.cn/register?from=Datawhale

  1. 租用4090

  2. 下载baseline相关文件

    在终端运行
     

    apt install git-lfs git lfs install git clone https://www.modelscope.cn/datasets/Datawhale/AI_Camp5_baseline_CV.git

  3. 上传提交结果到比赛网站

  4. 换用yolov9e.pt效果更好

不同yolov8及其区别

原始为
!wget http://mirror.coggle.club/yolo/yolov8n-v8.2.0.pt -O yolov8n.pt

下面任意一个
!wget http://mirror.coggle.club/yolo/yolov8s-v8.2.0.pt -O yolov8s.pt
!wget http://mirror.coggle.club/yolo/yolov8m-v8.2.0.pt -O yolov8m.pt
!wget http://mirror.coggle.club/yolo/yolov8l-v8.2.0.pt -O yolov8l.pt
!wget http://mirror.coggle.club/yolo/yolov8x-v8.2.0.pt -O yolov8x.pt
 

  1. yolov8n (Nano)

    • 最小的模型,具有最快的推理速度。
    • 适合于边缘设备或资源受限的环境。
    • 相对较低的检测精度。
  2. yolov8s (Small)

    • 较小的模型,相比 Nano 版本提供了更好的检测精度。
    • 平衡了模型大小和推理速度。
    • 适合于大多数应用场景。
  3. yolov8m (Medium)

    • 中等大小的模型,提供了较高的检测精度。
    • 相对较大的模型大小和较长的推理时间。
    • 适合于对精度有一定要求但又不过分消耗资源的应用。
  4. yolov8l (Large)

    • 较大的模型,提供了更高的检测精度。
    • 显著增加了模型大小和推理时间。
    • 适合于需要高精度检测的应用。
  5. yolov8x (X-Large)

    • 最大的模型,提供了最高的检测精度。
    • 最大的模型大小和最长的推理时间。
    • 适合于对精度有极高要求的应用场景。

之后修改导入的权重文件(.pt)

from ultralytics import YOLO
model = YOLO("yolov8m.pt")
results = model.train(data="yolo-dataset/yolo.yaml", epochs=3, imgsz=1088, batch=8, conf=0.3, mixup=0.5, optimizer="SGD", copy_paste=0.5, mosaic=0,augment=True)

Baseline 进阶

1.增加训练的数据集,可以增加更多的视频到训练集中进行训练。

2.可不断调整置信度conf的值,寻找合适的范围0.15也行

过程发现 :1.换用yolov9e.pt效果更好,但注意yolov8的用法有些不同,需要对源代码进行修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值