题意:一个n*n的棋盘(2 <= n <= 250),一个p+1个数的数组,各个数互不相同,第一个数是1,最后 一个数是n*n;一个q+1个数的数组,各个数互不相同,第一个数是1,最后 一个数是n*n;1 <= p,q < n*n;问这两个数组的LCS。
——>>把第一个序列重新编号为:1, 2, 3, ...
则第二个序列相应地就成了求LIS。
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 250 + 10;
const int INF = 1000000000;
int num[maxn*maxn], princess[maxn*maxn], g[maxn*maxn], d[maxn*maxn];
int main()
{
int t, n, p, q, i, temp;
scanf("%d", &t);
for(int kase = 1; kase <= t; kase++)
{
scanf("%d%d%d", &n, &p, &q);
memset(num, 0, sizeof(0));
for(i = 1; i <= p+1; i++)
{
scanf("%d", &temp);
num[temp] = i;
}
int m = 1;
for(i = 1; i <= q+1; i++)
{
scanf("%d", &temp);
if(num[temp]) princess[m++] = num[temp];
}
for(i = 1; i < m; i++) g[i] = INF;
int ret = -1;
for(i = 1; i < m; i++)
{
int k = lower_bound(g+1, g+m, princess[i]) - g;
d[i] = k;
g[k] = princess[i];
ret = max(ret, d[i]);
}
printf("Case %d: %d\n", kase, ret);
}
return 0;
}