poj - 1321 - 棋盘问题

题意:在一个n*n的棋盘上放k个棋子(任意两个棋子不同行不同列)有几种放法。(n <= 8, k <= n)

题目链接:http://poj.org/problem?id=1321

——>>和八皇后问题很像,只是这里不用每行都有,简单回溯。

时间复杂度 O(4^n)

#include <cstdio>
#include <cstring>

const int MAXN = 8 + 10;

int n;
int k;
int C;
char G[MAXN][MAXN];
bool vis[MAXN];

void Dfs(int curRow, int curCnt)
{
	if (curCnt == k)
	{
		++C;
		return;
	}
	if (curRow == n) return;

	for (int i = 0; i < n; ++i)
	{
		if (G[curRow][i] == '#' && vis[i] == false)
		{
			vis[i] = true;
			Dfs(curRow + 1, curCnt + 1);
			vis[i] = false;
		}
	}
	Dfs(curRow + 1, curCnt);
}

void Read()
{
	for (int i = 0; i < n; ++i)
	{
		getchar();
		for (int j = 0; j < n; ++j)
		{
			G[i][j] = getchar();
		}
	}
}

void Solve()
{
	C = 0;
	memset(vis, 0, sizeof(vis));
	Dfs(0, 0);
}

void Output()
{
	printf("%d\n", C);
}

int main()
{
	// freopen("poj_1321.in", "r", stdin);
	while (scanf("%d%d", &n, &k) == 2)
	{
		if (n == -1 && k == -1) break;
		Read();
		Solve();
		Output();
	}
	return 0;
}

old code:

#include <cstdio>
#include <cstring>

using namespace std;

const int maxn = 10;
int cnt, n, k;
char MAP[maxn][maxn];
bool vis[maxn];

void dfs(int x, int cur)
{
    if(cur == k)
    {
        cnt++;
        return;
    }
    else
    {
        for(int i = x; i < n; i++)
            for(int j = 0; j < n; j++)
            if(MAP[i][j] == '#' && !vis[j])
            {
                vis[j] = 1;
                dfs(i+1, cur+1);
                vis[j] = 0;
            }
    }
}

int main()
{
    int i, j;
    while(scanf("%d%d", &n, &k) == 2)
    {
        if(n == -1 && k == -1) return 0;
        for(i = 0; i < n; i++)
        {
            getchar();
            for(j = 0; j < n; j++)
                MAP[i][j] = getchar();
        }
        cnt = 0;
        memset(vis, 0, sizeof(vis));
        dfs(0, 0);
        printf("%d\n", cnt);
    }
    return 0;
}


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值