剑指offer——圆圈中最后剩下的数字(c++)

题目描述

在0,1,…,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。
求出这个圆圈里剩下的最后一个数字。
样例

输入:n=5 , m=3
输出:3
思路一 用环形链表模拟圆圈

本题就是有名的约瑟夫环问题。我们可以环形列表来模拟,每次从这个列表中删除第 m m m个元素,一直到列表最后剩下一个元素为止。
考虑用STL中std::list来模拟这个环形列表,由于list并不是一个环形的结构,因此每次跌代器扫描到列表末尾的时候,要把迭代器移到列表的头部。这样就是按照一个圆圈的顺序来遍历这个列表了。
时间复杂度是 O ( m n ) O(mn) O(mn)

class Solution {
public:
    int lastRemaining(int n, int m){
        if(n < 1 || m < 1)
            return -1;
        list<int> nums;
        for(int i = 0; i < n; ++i)
            nums.push_back(i);
        list<int>::iterator cur = nums.begin();
        while(nums.size() > 1){
            for(int i = 1; i < m; ++i){
                ++cur;
                if(cur == nums.end())
                    cur = nums.begin();
            }
            list<int>::iterator next = ++cur;
            if(next == nums.end())
                next = nums.begin();
            --cur;
            nums.erase(cur);
            cur = next;
        }
        return *(cur);
    }
};
思路二 公式推导

首先定义最初的 n n n个数字 ( 0 , 1 , … , n − 1 ) (0,1,…,n-1) 0,1,,n1中最后剩下的数字是关于 n n n m m m的方程为 f ( n , m ) f(n,m) f(n,m)

在这 n n n个数字中,第一个被删除的数字是 ( m − 1 ) (m-1)%n (m1),为简单起见记为 k k k,那么删除 k k k之后的剩下 n − 1 n-1 n1的数字为 0 , 1 , … , k − 1 , k + 1 , … , n − 1 0,1,…,k-1,k+1,…,n-1 0,1,,k1,k+1,,n1,并且下一个开始计数的数字是 k + 1 k+1 k+1。相当于在剩下的序列中, k + 1 k+1 k+1排到最前面,从而形成序列 k + 1 , … , n − 1 , 0 , … k − 1 k+1,…,n-1,0,…k-1 k+1,,n1,0,k1。该序列最后剩下的数字也应该是关于 n n n m m m的函数。由于这个序列的规律和前面最初的序列不一样(最初的序列是从0开始的连续序列),因此该函数不同于前面函数,记为 f ′ ( n − 1 , m ) f&#x27;(n-1,m) f(n1,m)。最初序列最后剩下的数字 f ( n , m ) f(n,m) f(n,m)一定是剩下序列的最后剩下数字 f ′ ( n − 1 , m ) f&#x27;(n-1,m) f(n1,m),所以 f ( n , m ) = f ′ ( n − 1 , m ) f(n,m)=f&#x27;(n-1,m) f(n,m)=f(n1,m)
接下来我们把剩下的的这 n − 1 n-1 n1个数字的序列 k + 1 , … , n − 1 , 0 , … k − 1 k+1,…,n-1,0,…k-1 k+1,,n1,0,k1作一个映射,映射的结果是形成一个从 0 0 0 n − 2 n-2 n2的序列:

k+1    ->    0
k+2    ->    1
…
n-1    ->    n-k-2
0      ->    n-k-1
…
k-1    ->    n-2

把映射定义为 p p p,则 p ( x ) = ( x − k − 1 ) % n p(x)= (x-k-1)\%n p(x)=(xk1)%n,即如果映射前的数字是 x x x,则映射后的数字是 ( x − k − 1 ) % n (x-k-1)\%n (xk1)%n。对应的逆映射是 p − 1 ( x ) = ( x + k + 1 ) % n p-1(x)=(x+k+1)\%n p1(x)=(x+k+1)%n

由于映射之后的序列和最初的序列有同样的形式,都是从 0 0 0开始的连续序列,因此仍然可以用函数 f f f来表示,记为 f ( n − 1 , m ) f(n-1,m) f(n1,m)。根据我们的映射规则,映射之前的序列最后剩下的数字 f ′ ( n − 1 , m ) = p − 1 [ f ( n − 1 , m ) ] = [ f ( n − 1 , m ) + k + 1 ] % n f&#x27;(n-1,m)= p-1 [f(n-1,m)]=[f(n-1,m)+k+1]\%n f(n1,m)=p1[f(n1,m)]=[f(n1,m)+k+1]%n。把 k = ( m − 1 ) % n k=(m-1)\%n k=(m1)%n代入得到 f ( n , m ) = f ′ ( n − 1 , m ) = [ f ( n − 1 , m ) + m ] % n f(n,m)=f&#x27;(n-1,m)=[f(n-1,m)+m]\%n f(n,m)=f(n1,m)=[f(n1,m)+m]%n

经过上面复杂的分析,我们终于找到一个递归的公式。要得到 n n n个数字的序列的最后剩下的数字,只需要得到 n − 1 n-1 n1个数字的序列的最后剩下的数字,并可以依此类推。当 n = 1 n=1 n=1时,也就是序列中开始只有一个数字 0 0 0,那么很显然最后剩下的数字就是 0 0 0。因此有递推公式:
f ( n , m ) = { 0 n=1 [ f ( n − 1 , m ) + m ] % n n&gt;1 f(n,m)= \begin{cases} 0&amp; \text{n=1}\\ [f(n-1, m) +m] \% n&amp; \text{n&gt;1} \end{cases} f(n,m)={0[f(n1,m)+m]%nn=1n>1

这个公式使用递归和迭代都很容易实现,时间复杂度为O(n),下面是基于递归实现的代码

class Solution {
public:
    int lastRemaining(int n, int m){
        if(n < 1 || m < 1)
            return -1;
        if(n == 1)
            return 0;
        return (lastRemaining(n-1, m) + m) % n;
    }
};
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值