【算法竞赛学习笔记】倍增法

本文介绍了倍增法,一种优化时间复杂度的方法,通过每次翻倍情况来处理问题。内容包括倍增法在解决RMQ问题(ST表)、求LCA及P1081 [NOIP2012 提高组] 开车旅行问题中的应用,并提供了相关参考资料。
摘要由CSDN通过智能技术生成

title : 倍增法
date : 2022-3-15
tags : ACM,杂项,算法基础
author : Linno


倍增

倍增法(binary lifting),是一种每次将情况翻倍从而将线性处理转化为对数级处理,进而极大优化时间复杂度的方法。

基本应用

解决RMQ问题(ST表)

对于区间 [ i , i + 2 k ] [i,i+2^k] [i,i+2k]求最大/最小值,实际上就是对前 [ i , i + 2 k − 1 ] [i,i+2^{k-1}] [i,i+2k1] [ i + 2 k − 1 + 1 , 2 k ] [i+2^{k-1}+1,2^k] [i+2k1+1,2k]两个区间求最大/最小值。如果我们预处理出每个数字 i i i加上 2 p 2^p 2p次幂范围的答案,那么就可以 O ( 1 ) O(1) O(1)得到 [ i , i + 2 p + 1 ] [i,i+2^{p+1}] [i,i+2p+1]区间的结果。阈值是 O ( n l o g n ) O(nlogn) O(nlogn)的预处理。

//luoguP3865 【模板】ST 表
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

ll n,m,l,r,lg2[32],fang[32],a[1000005][32];

int main(){
   
	scanf("%lld%lld",&n,&m);
	lg2[0]=-1;for(int i=1;i<=31;i++) lg2[i]=lg2[i/2]+1;
	fang[0]=1;for(int i=1;i<=31;i++) fang[i]=fang[i-1]*2;
	for(int i=1;i<=n;i++) scanf(&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RWLinno

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值