title : 倍增法
date : 2022-3-15
tags : ACM,杂项,算法基础
author : Linno
倍增
倍增法(binary lifting),是一种每次将情况翻倍从而将线性处理转化为对数级处理,进而极大优化时间复杂度的方法。
基本应用
解决RMQ问题(ST表)
对于区间 [ i , i + 2 k ] [i,i+2^k] [i,i+2k]求最大/最小值,实际上就是对前 [ i , i + 2 k − 1 ] [i,i+2^{k-1}] [i,i+2k−1]和 [ i + 2 k − 1 + 1 , 2 k ] [i+2^{k-1}+1,2^k] [i+2k−1+1,2k]两个区间求最大/最小值。如果我们预处理出每个数字 i i i加上 2 p 2^p 2p次幂范围的答案,那么就可以 O ( 1 ) O(1) O(1)得到 [ i , i + 2 p + 1 ] [i,i+2^{p+1}] [i,i+2p+1]区间的结果。阈值是 O ( n l o g n ) O(nlogn) O(nlogn)的预处理。
//luoguP3865 【模板】ST 表
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,m,l,r,lg2[32],fang[32],a[1000005][32];
int main(){
scanf("%lld%lld",&n,&m);
lg2[0]=-1;for(int i=1;i<=31;i++) lg2[i]=lg2[i/2]+1;
fang[0]=1;for(int i=1;i<=31;i++) fang[i]=fang[i-1]*2;
for(int i=1;i<=n;i++) scanf(&