【论文笔记】最近看的时空数据挖掘综述整理8.27

Deep Learning for Spatio-Temporal Data Mining: A Survey

被引用次数:392

[Submitted on 11 Jun 2019 (v1), last revised 24 Jun 2019 (this version, v2)]

主要内容: 该论文是一篇关于深度学习在时空数据挖掘中的应用的综述。论文首先介绍了时空数据挖掘的背景和意义,然后详细介绍了深度学习在时空数据挖掘中的应用,包括卷积神经网络(CNN)、循环神经网络(RNN)等模型在时空数据中的特征学习、时空数据的表示方法、时空数据的预测和分类等任务。此外,论文还介绍了一些深度学习在时空数据挖掘中的应用案例,如交通流量预测、犯罪预测等。

Ⅰ. introduction
  • 介绍了时空数据挖掘的背景和意义

    • 时空数据挖掘是指从时空数据中发现有用的知识和模式的过程。
    • 时空数据挖掘在很多领域都有应用,如交通、气象、医疗等,可以帮助人们更好地理解和预测现象。
  • 传统数据挖掘方法在处理时空数据时的局限性。

    • 随着时空数据集的数量、体积和分辨率的迅速增加,传统的数据挖掘方法,特别是基于统计的方法,已经无法处理这些数据。

    因此,深度学习技术的发展为时空数据挖掘提供了新的机会和挑战。

Ⅱ. categorization of spatio-temporal data
  • 数据类型
    • 点数据
    • 线数据
    • 面数据
  • 数据来源
    • 传感器数据
    • 人工采集数据
    • 模拟数据
  • 数据表示
    • 矢量数据
    • 栅格数据
Ⅲ. Framework
  • ADAIN model :包括了多源数据的特征提取和融合、FNN和RNN模型的特征学习、全连接层的预测等步骤。
  • ST-ResNet : 基于残差神经网络,用于预测城市中每个区域的人流量。该模型框架包括了外部特征和人流量数据的特征提取和融合、残差神经网络的特征学习等步骤。
Ⅳ. Deep Learning Models for addressing different STDM problems

主要介绍了基于深度学习模型解决不同时空数据管理问题的方法。

  • 首先将时空数据管理问题分为不同的类别,包括预测、表示学习、检测、分类、推断/估计、推荐等。
  • 介绍了针对不同类别问题所提出的深度学习模型,包括卷积神经网络、循环神经网络、自编码器、生成对抗网络等。
  • 总结了当前深度学习模型在不同领域的应用,包括交通、气候和天气、人类移动性、基于位置的社交网络、犯罪分析和神经科学等。
Ⅴ. Applications
  • 交通流量预测
  • 按需服务
  • 气候/天气
  • 人流预测
  • 基于位置的社交网络(LBSN)
  • 犯罪预测
  • 神经科学
Ⅵ. Open Problem
  • 模型可解释性
  • 深度学习模型选择
  • STDM任务的扩展应用
  • ST数据集多模态融合

Spatio-Temporal Data Mining: A Survey of Problems and Methods

被引用次数:418

[Submitted on 13 Nov 2017 (v1), last revised 17 Nov 2017 (this version, v2)]

问题&方法
  • 1.轨迹模式挖掘
    • 基于聚类的方法:基于密度聚类、基于网络聚类、基于子轨迹聚类
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于分类的方法:基于决策树分类、基于SVM分类
    • 基于关联规则方法:频繁模式挖掘、关联规则挖掘
  • 2.时空聚类
    • 传统聚类方法:K-means、层次聚类、共享最近邻聚类、归一化割聚类
    • 混合模型方法:高斯混合模型、隐马尔可夫模型
    • 密度聚类方法:DBSCAN聚类、OPTICS聚类
    • 基于图的聚类方法:谱聚类,模块度最优化聚类
    • 基于子序列聚类方法:基于动态时间规整的子序列聚类
  • 3.时空分类
    • 基于统计学习的方法:支持向量机、决策树、随机森林
    • 基于聚类的方法:K-mean聚类、层次聚类、DBSCAN聚类
    • 基于贝叶斯网络的方法:动态贝叶斯网络、半马尔可夫决策过程
    • 基于规则的方法:分类规则、关联规则
    • 基于神经网络的方法:卷积神经网络、循环神经网络
  • 4.时空关联规则挖掘
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于序列模式挖掘的方法:频繁序列挖掘、序列聚类
    • 基于关联规则挖掘的方法:频繁模式挖掘、关联规则挖掘
  • 5.时空异常检测
    • 基于统计学习的方法:支持向量机、随机森林、神经网络
    • 基于聚类的方法:K-means、DBSCAN聚类
    • 基于密度的方法:LOF、OPTICS
    • 基于时空窗口的方法:滑动时空窗口、固定时空窗口
    • 基于时空关联规则的方法:时空关联规则挖掘
  • 6.时空预测
    • 基于时间序列的方法:ARIMA模型、指数平滑模型、状态空间模型
    • 基于回归的方法:线性回归、岭回归、Lasso回归
    • 基于机器学习的方法:支持向量机、随机森林、神经网络
    • 基于时空关联规则的方法:时空关联规则挖掘
    • 基于深度学习的方法:卷积神经网络、循环神经网络

Transformers in Time Series: A Survey

被引用次数:188

[Submitted on 15 Feb 2022 (v1), last revised 11 May 2023 (this version, v5)]

主要内容

本论文是一篇关于时间序列Transformer的综述,系统地回顾了Transformer在时间序列建模中的应用。论文首先介绍了Transformer的基本概念,然后从网络修改和应用领域的角度提出了一个新的分类法。在网络修改方面,论文讨论了对Transformer进行的低层次(即模块)和高层次(即架构)的改进,以优化时间序列建模的性能。在应用方面,论文分析和总结了用于流行的时间序列任务(包括预测、异常检测和分类)的Transformer。对于每个时间序列Transformer,论文分析了其见解、优点和局限性。为了提供有效使用Transformer进行时间序列建模的实用指南,论文进行了广泛的实证研究,包括鲁棒性分析、模型大小分析和季节趋势分解分析。最后,论文讨论了时间序列Transformer的未来发展方向。

主要贡献

本论文的主要贡献在于系统地回顾了Transformer在时间序列建模中的应用,提出了一个新的分类法,并分析了每个时间序列Transformer的见解、优点和局限性。此外,论文还进行了广泛的实证研究,为使用Transformer进行时间序列建模提供了实用指南。

网络修改方面的改进
  • 位置编码:将输入时间序列的位置信息编码为向量,并注入到模型中作为一个额外的输入。
  • 门控线性单元:GLU可以在Transformer中引入非线性性,从而提高模型的表达能力。
  • 多层感知机:可以使用MLP来提高模型的表达能力。
  • 自适应注意力(Adaptive Attention):可以根据输入序列的特征自适应地调整注意力权重,从而提高模型的性能。
  • 时间卷积(Temporal Convolution):可以提高模型的表达能力。
  • 时序卷积网络(Temporal Convolutional Networks,TCN)
  • 时序自注意力(Temporal Self-Attention)
Table 1: Complexity comparisons of popular time series Transformers with different attention modules.
TrainingTesting
MethodsTimeMemorySteps
TransformerO(N^2)O(N^2)N
LogTransO(NlogN)O(NlogN)1
InformerO(NlogN)O(NlogN)1
AutoformerO(NlogN)O(NlogN)1
PyraformerO(N)O(N)1
QuatformerO(2cN)O(2cN)1
FEDformerO(N)O(N)1
CrossformerO(DN^2/(Lseg^2))O(N)1

Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey

被引用次数:9

[Submitted on 25 Mar 2023 (v1), last revised 27 Apr 2023 (this version, v2)]

本文的主要内容是关于Spatio-Temporal Graph Neural Networks(STGNN)在城市计算中的预测学习应用。文章介绍了STGNN技术的基本原理、应用场景、算法模型和实验结果,并探讨了STGNN在城市交通、气象预测、社交网络等领域的应用前景。

STGNN应用于城市计算

在这里插入图片描述

STGNN基本原理

将图神经网络(GNNs)和各种时间学习方法相结合,以提取复杂的时空依赖关系。具体来说,STGNN通过构建时空数据,将空间信息和时间信息相结合,然后使用GNNs对空间信息进行建模,使用时间学习方法对时间信息进行建模,最后将两者结合起来,以实现对复杂时空依赖关系的建模和预测。
在这里插入图片描述

基本架构
  • GNN
    • Spectral Graph Convolutional Network
    • Spatial Graph Convolutional Network
    • Graph Attention Network
  • Recurrent Neural Networks
    • Long-Short Term Memory Network
    • Gated Recurrent Unit Network
  • Temporal Convolutional Netowrks
    • Gated Temporal Convolutional Network
    • Causal Temporal Convolutional Network
  • Temporal Self-Attention Networks
  • Spatio-Temporal Fusion Neural Architecture
    • Factorized Neural Architecture
    • Coupled Neural Architecture

在这里插入图片描述

应用场景
  • 交通方面
    • 交通需求预测
    • 交通意外预测
    • 交通用时预测
    • 交通轨迹预测
  • 环境方面
    • 空气质量预测
    • 气候预测
  • 公共安全方面
    • 犯罪频率预测
    • 灾难方位预测
  • 公共健康方面
    • 传染病预测
    • 救护车需求预测
  • 其他应用领域:能源、经济、金融、生产
STGNN变体
  • 空间学习方法
    • Multi-Graph Convolution
    • Adaptive Graph Learning
    • Muti-Scale Spatial Learning
    • Heterogeneous spatial learning
  • 时间学习方法
    • Multi-Scale Temporal Learning
    • Multi-Granularity Temporal Learning
    • Decomposition Temporal Learning
  • 时空融合方法
    • Spatio-Temporal Joint Modeling
    • Automated Spatio-Temporal Fusion
先进学习框架
  • Adversarial Learning
  • Meta Learning
  • Self-Supervised Learning
  • Continuous Spatio-Temporal modeling
  • Physics-Informed Learning
  • Transfer Learning
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RWLinno

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值