文章目录
dp 22 最长回文子串
题目描述
给定一个字符串,找到其中最长的回文子序列,并返回该序列的长度。
注:回文序列是指这个序列无论从左读还是从右读都是一样的。
本题中子序列字符串任意位置删除k(len(s)>=k>=0)个字符后留下的子串。
数据范围:字符串长度满足
1
≤
n
≤
1000
数据范围:字符串长度满足 1 \le n \le 1000
数据范围:字符串长度满足1≤n≤1000
进阶:空间复杂度 O ( n 2 ) ,时间复杂度 O ( n 2 ) 进阶:空间复杂度 O(n^2) , 时间复杂度 O(n^2) 进阶:空间复杂度O(n2),时间复杂度O(n2)
输入样例
abccsb
4
abcdewa
3
abccda
4
定义状态
dp(i, j) 为从i到j的最长回文子序列。
那么当 s[i] 和 s[j] 相匹配的时候,整个长度就是由2 + dp(i+1, j-1)。
如果不匹配,那么当前状态可以从 i,j-1或者i-1,j到达。
我们选择其中一个最大的即可。
注意到上述是从i+1转移到 i 的。
所以循环的时候需要从高到低进行遍历。
#include <bits/stdc++.h>
using namespace std;
int main() {
string s;
cin.tie(0);
cin >> s;
int n = s.size();
int dp[n][n];
int maxN = 0;
for(int i = 0; i < n; ++i) {
for(int j = 0; j < n; ++j) {
dp[i][j] = 1;
}
}
for(int i = n - 1; i >= 0; --i) {
for(int j = i + 1; j < n; ++j) {
if(s[i] == s[j]) {
if(j == i + 1) {//cc这种是2
dp[i][j] = 2;
} else {
dp[i][j] = 2 + dp[i+1][j-1];
}
} else {
dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
//dp[i][j] = max(dp[i][j], dp[i+1][j]);
}
maxN = max(maxN, dp[i][j]);
}
}
// for(int i = 0; i < n; ++i) {
// for(int j = 0; j < n; ++j) {
// // cout << dp[i][j] << ' ';
// }
// //cout << endl;
// }
printf("%d", maxN);
return 0;
}
// 64 位输出请用 printf("%lld")
当然这题还能换种角度看。
回文从头和从尾一样,那我们可以直接翻转一遍,然后求这两个字符串的LCS。
#include <bits/stdc++.h>
using namespace std;
int longestSeqNum(string& s, string& t) {
int m = s.size();
int n = t.size();
vector<vector<uint64_t>>dp(m + 1, vector<uint64_t>(n + 1,
0)); // dp[i][j] 表示 i-1结尾的s j-1结尾 t的
// 最长公共 子序列的长度
// 注意要弄懂 dp[i][j] 的含义 不要有 dp[0][0] = 1; 这什么鬼
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
int main() {
string s;
cin.tie(0);
cin >> s;
string t = s;
reverse(s.begin(), s.end());
printf("%d", longestSeqNum(s, t));
return 0;
}
// 64 位输出请用 printf("%lld")