2024年度最佳大型语言模型(LLMs)汇总

本文介绍了大型语言模型(LLMs)的发展历程,以ChatGPT为例,探讨了OpenAI、Google和Meta等公司开发的LLM,包括它们的参数、应用和潜力。文章还预测了未来LLMs的发展趋势,如多模态模型和企业部署的增加。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大型语言模型(LLMs)是人工智能文本处理的主要类型,也现在最流行的人工智能应用形态。ChatGPT是迄今为止最著名的使用LLM的工具,它由OpenAI的GPT模型的特别调整版本提供动力。但还有许多其他聊天机器人和文本生成器,包括从Google Bard和Anthropic的Claude到Writesonic和Jasper,它们都是建立在LLMs之上的。

自2010年代末以来,众多的LLM一直在研究实验室中酝酿,如果不是ChatGPT的出现,它们可能还会继续待在实验室里孤芳自赏,但在ChatGPT发布并展示出色实力后,它们也冲出实验室,进入了现实世界。 有些 LLM 已经开发了多年,有些则迅速发展起来以赶上最新的炒作周期,还有更多的是开源研究工具。

2024年最佳LLMs

目前大概有几十个主要的LLMs,还有数百个由于某种原因而具有争议的,将它们全部列出几乎是不可能的,而且无论如何,由于LLMs的发展速度很快,它可能会在几天内过时。

对于“最佳”这个词,我们不妨持保留态度:我已经试图通过提供一个最重要、最有趣和最流行的 LLM(和 LMM)列表来缩小范围,而不一定是那些在基准测试中表现优异的(尽管其中大多数是这样)。 我还主要关注您可以使用的 LLM,而不是那些超级有趣的研究论文的主题,因为我们喜欢在这里保持实用性。

在开始之前还有最后一件事:很多人工智能应用都没有列出它们所依赖的LLM。有些我们可以猜测,或者从他们的营销材料中可以清楚地看出,但对于大多数应用,我们只是不知道。这就是为什么你会在下面的表格中看到“未披露”——这只是意味着我们不知道任何使用LLM的主要应用,尽管可能有一些应用使用了它。

LLM

开发者

热门应用

参数数量

访问方式

GPT

OpenAI

Microsoft, Duolingo, Stripe, Zapier, Dropbox, ChatGPT

175 billion+

API

Gemini

Google

Some queries on Bard 

Nano: 1.8 & 3.25 billion; others unknown

API

PaLM 2

Google

Google Bard, Docs, Gmail, and other Google apps

340 billion

API

Llama 2

Meta

未披露

7, 13, and 70 billion

Open source

Vicuna

LMSYS Org

Chatbot Arena

7, 13, and 33 billion

Open source

Claude 2

Anthropic

Slack, Notion, Zoom

Unknown

API

Stable Beluga

Stability AI

未披露

7, 13, and 70 billion

Open source

### 大型语言模型概述 大型语言模型(Large Language Models, LLMs)代表了一类基于深度学习技术构建的强大自然语言处理工具。这些模型通过大规模语料库训练,在多种任务上展现出卓越性能,包括但不限于文本生成、问答系统以及对话代理。 #### 发展历程与特性 LLMs经历了四个发展阶段:预训练-微调范式下的早期探索;引入自监督学习机制后的架构创新;参数量级突破百亿乃至千亿规模所带来的质变效应;最终形成具备广泛适用性的通用人工智能平台[^1]。相较于传统的小型或特定领域限定的语言模型LLMs具有显著优势——更强的泛化能力和更少的数据依赖性。 #### 关键差异对比 当比较LLMs与其他类型的预训练语言模型时,主要存在三点不同之处: - **数据需求**:前者能够利用互联网上的海量无标注文本资源进行高效训练; - **上下文理解力**:后者往往受限于固定长度的历史记录窗口大小,而前者则能更好地捕捉长期依赖关系; - **迁移灵活性**:对于下游应用场景而言,仅需少量样本即可实现良好适配效果。 #### 应用场景拓展 除了传统的文字处理外,多模态融合成为新的研究热点之一。例如Video-LLaMA框架允许同时解析视频中的视觉和听觉信息,并将其转换成连贯的语言描述,从而支持更加复杂的人机交互形式[^3]。 此外,在实际业务操作层面,诸如内容审查这样的功能也得到了极大增强。借助于强大的分类识别技能,经过专门调整优化过的LLM版本可以迅速响应政策变动并精准定位违规行为,极大地提高了工作效率和服务质量[^4]。 ```python # Python代码示例展示如何加载一个预训练好的LLM用于简单的情感分析任务 from transformers import pipeline sentiment_analysis = pipeline("sentiment-analysis") result = sentiment_analysis(["We are very happy to see you!", "This is so annoying."]) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值