非期望超效率SBM模型代码
本文使用计算方式为:Matlab,适用于截面数据,时间序列数据和面板数据等。
本文附带文件包括:Matlab工具包和1个视频教学文件,如果您看不懂本文,您可以选择看视频文件。
2002.0为SBM模型Matlab工具包的初始版本,该包目前可以计算SBM模型、超效率SBM模型、带有非期望产出的SBM模型和带有非期望产出的超效率SBM模型,以上模型都可以选择规模报酬可变和规模报酬不变两种情形
YID:873740834246517
凌霄宝店
非期望超效率SBM(Slack-based Measure)模型是一种用于计算数据效率的方法。该模型使用Matlab进行计算,适用于截面数据、时间序列数据和面板数据等。本篇文章将介绍该模型的代码和使用方法。
首先,我们提供了一个Matlab工具包和一个视频教学文件,以帮助读者更好地理解和使用该模型。如果读者对本文内容有所困惑,可以选择观看视频文件来获取更直观的理解。
本工具包的初始版本发布于2002年,目前已经发展到可以计算多种模型,包括SBM模型、超效率SBM模型、带有非期望产出的SBM模型和带有非期望产出的超效率SBM模型。读者可以根据自己的需求选择不同的模型进行计算。同时,这些模型还可以选择规模报酬可变和规模报酬不变两种情形进行计算,以适应不同的数据特征。
SBM模型通过计算各个单位的效率指标,来评估其在生产过程中的表现。该模型考虑了多个输入和输出因素,并通过线性规划方法进行计算。超效率SBM模型在SBM模型的基础上引入了超效率值,用于衡量单位在相同输入条件下的最优效率水平。带有非期望产出的SBM模型和带有非期望产出的超效率SBM模型则进一步考虑了非期望的产出情况,使模型更加贴合实际情况。
使用该工具包进行计算的步骤如下:
第一步,准备数据。用户需要准备用于计算的数据,包括输入和输出数据。
第二步,调用Matlab工具包。用户需要打开Matlab环境,并将工具包导入到Matlab中。
第三步,设置参数。用户需要根据自己的数据特征和需求,设置相应的参数,如输入和输出变量的个数、权重等。
第四步,运行代码。用户需要运行相应的代码文件,进行计算。
第五步,获取结果。计算完成后,用户可以获得计算结果,包括各个单位的效率指标和相应的超效率值。
需要注意的是,该工具包适用于截面数据、时间序列数据和面板数据等不同类型的数据。用户可以根据自己的数据类型选择相应的计算方法。
总的来说,非期望超效率SBM模型是一种用于计算数据效率的方法,通过Matlab工具包可以方便地进行计算。该工具包支持多种模型和数据类型,使得用户可以根据自己的需求选择合适的模型进行计算。希望通过本文的介绍,读者可以更好地理解和应用该模型。同时,我们提供的视频教学文件也可以作为辅助学习的工具,帮助读者更好地使用该工具包。
相关的代码,程序地址如下:http://nodep.cn/740834246517.html