【狼窝乀野狼】Parallel浅尝辄止

     前段时间看到园子里面有同学在用Parallel进行批量插入数据库。后面也有很多同学针对这一事件给出了自己的看法和见解。我在这里不评论内容的好坏,至少能将自己东西总结分享这个是要靠勇气和毅力。

     闲话少说,我在最近看崔鹏飞的github的时候,发现他对这块也做了一定的总结,那么我就他这块进行板书与展示。案例是怎么回事呢?话说我有一个公司,里面需要统计一下总收入,另外有一个公司被我收购了,我一起计算总收入。当一天我收购了N个公司,计算总收入的时候,我们采用并行计算。

 1    internal class Company
 2     {
 3         public decimal TotalIncome;
 4 
 5         public Company Merge(Company that)
 6         {
 7             Calc();
 8             TotalIncome += that.TotalIncome;
 9             return this;
10         }
11 
12         /// <summary>
13         /// 复杂运算
14         /// </summary>
15         private void Calc()
16         {
17             //TODO:省略500字
18         }
19     }
View Code

首先我们想到的是采用直接累加就行了吧,这是所谓的线性预算。

        /// <summary>
        /// 线性运行
        /// </summary>
        /// <param name="bigCompany"></param>
        /// <param name="smallCompanies"></param>
         /// <returns></returns>
        private static Company LinearMerge(Company bigCompany, IEnumerable<Company> smallCompanies)
        {
            foreach (Company smallCompany in smallCompanies)
            {
                bigCompany.Merge(smallCompany);
            }
            return bigCompany;
        }

采用线性运算,毫无疑问结果是正确的。但是,如果的N大一点,例如30000000个,可能就要花一点时间了。

那么是否我们可以采用并行处理呢?OK,直接上代码。

 1         /// <summary>
 2         /// 并行处理
 3         /// </summary>
 4         /// <param name="bigCompany"></param>
 5         /// <param name="smallCompanies"></param>
 6         /// <returns></returns>
 7         private static Company ParallelMerge(Company bigCompany, IEnumerable<Company> smallCompanies)
 8         {
 9             Parallel.ForEach(smallCompanies, smallCompany => bigCompany.Merge(smallCompany));
10             return bigCompany;
11         }    
View Code

时间很快,但是结果呢?结果和上面线性的一致么?

那么我如果在并行的基础上面加一把锁呢,保证每次独占资源。

 1         /// <summary>
 2         /// 并行加锁
 3         /// </summary>
 4         /// <param name="bigCompany"></param>
 5         /// <param name="smallCompanies"></param>
 6         /// <returns></returns>
 7         private static Company ParallelMergeLock(Company bigCompany, IEnumerable<Company> smallCompanies)
 8         {
 9             var obj = new object();
10             Parallel.ForEach(smallCompanies, smallCompany =>
11             {
12                 lock (obj)
13                 {
14                     bigCompany.Merge(smallCompany);
15                 }
16             });
17             return bigCompany;
18         }    

毫无疑问,结果也是正确的,那么耗时可能我们就要关心了。那么耗时究竟怎么样呢?

我们可以采用函数式处理嘛。

 1         /// <summary>
 2         /// 函数式合并
 3         /// </summary>
 4         /// <param name="bigCompany"></param>
 5         /// <param name="smallCompanies"></param>
 6         /// <returns></returns>
 7         private static Company FunctionalMerger(Company bigCompany, IEnumerable<Company> smallCompanies)
 8         {
 9             return smallCompanies.Aggregate(bigCompany, (buyer, seller) => buyer.Merge(seller));
10         }

那么我们在在函数式的基础上面进行并行化处理呢?

 1         /// <summary>
 2         /// 函数式的并行化
 3         /// </summary>
 4         /// <param name="bigCompany"></param>
 5         /// <param name="smallCompanies"></param>
 6         /// <returns></returns>
 7         private static Company FunctionParallelMerge(Company bigCompany, IEnumerable<Company> smallCompanies)
 8         {
 9             return smallCompanies.AsParallel().Aggregate(() => new Company(), (shell, smallCompany) => shell.Merge(smallCompany), (shell1, shell2) => shell1.Merge(shell2), bigCompany.Merge);
10         }

上面提出了一些问题,这里我们用实际的测试数据查看。

测试代码

 1         private static IEnumerable<Company> GenerateSmallCompanies()
 2         {
 3             return Enumerable.Range(0, 30000000).Select(number => new Company { TotalIncome = number }).ToArray();
 4         }
 5 
 6         private static void PrintMergeResult(Func<Company, IEnumerable<Company>, Company> mergeMethod, string funcApproach)
 7         {
 8             var stopWatch = new Stopwatch();
 9             stopWatch.Start();
10             var mergeResult = mergeMethod(new Company { TotalIncome = 1000000 }, m_SmallCompanies);
11             stopWatch.Stop();
12             Console.WriteLine("{0}:{1}  Time:{2}", funcApproach, mergeResult.TotalIncome, stopWatch.ElapsedMilliseconds);
13         }
14 
15         private static void TryAll()
16         {
17             Console.WriteLine("============================");
18             PrintMergeResult(LinearMerge, "简单直接     ");
19             PrintMergeResult(ParallelMerge, "错误并行    ");
20             PrintMergeResult(ParallelMergeLock, "加锁并行    ");
21             Console.WriteLine("***********");
22             PrintMergeResult(FunctionalMerge,"函数式合并 ");
23             PrintMergeResult(FunctionParallelMerge, "函数式并行合并 ");
24         }
25 
26 
27         private static readonly IEnumerable<Company> m_SmallCompanies = GenerateSmallCompanies();
28         static void Main()
29         {
30             Console.WriteLine("测试数据30000000个");
31             for (int i = 0; i < 5; i++)
32             {
33                 TryAll();
34             }
35             Console.ReadKey();
36         }

测试结果如下:

 

按照理论情况,错误并行应该比直接更快,但是不知道我机器(CPU AMD)上面出现这样的情况,其他情况还算正常。在另一台计算机(CPU Intel)上面运行测试,数据如下:

 

转载于:https://www.cnblogs.com/VisualAssistX/p/6091268.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值