在研发Agent智能体这件事上,实在智能一直在努力。
早在2023年初,ChatGPT于国内掀起热潮之际,实在智能便已透露其大模型研发计划,并于同年6月,在行业内率先推出自研的TARS大模型,
当多数AI厂商仍聚焦于“如何让大模型更好用”的议题时,实在智能已然将目光投向更深层次的领域——“如何让AI系统自主完成复杂工作”的Agent智能体领域,并在同年8月份再次领先行业推出智能体——TARS-RPA-Agent。
今天,时隔20个月,实在智能再次推出全新的通用智能体——实在Agent,在行业中再度引发关注。
发布会现场,实在智能通过一系列实操案例和测试数据,展示了实在Agent在语义理解、任务拆分、跨系统执行等过程的强大能力,真正实现了“一句话操作一切软件”的便捷体验。
除了实在Agent本身的能力外,实在智能还同步展示了推理底座大模型TARS-VL、企业大脑、手机端Agent等多方面的应用成果。
一个客户端,即装即用
在此次发布会前,实在智能官网已提前放出实在Agent的下载链接:https://www.ai-indeed.com/downloadCenter
产品初始界面正如发布会演示的那般,简洁明了、实用高效,仅有一个对话框。
在实在智能的理念中,产品设计应聚焦于最核心的内容——功能与用户体验。为此,其产品团队在确保核心功能简洁易用的基础上,对其他冗余元素与复杂操作进行了优化处理,或直接去除,或提前为用户预设好,让产品呈现出最纯粹的原生态,极大地降低了用户的使用门槛,提升了产品的可理解性与易用性。
在发布会上,实在智能详细介绍了实在Agent智能体的三大产品亮点:
-
即装即用的便捷性:用户只需下载客户端并完成安装,无需邀请码即可直接登录免费使用。通过简单的Ctrl+SPACE组合键,就能轻松实现智能体的一键唤醒与隐藏操作,方便快捷。
-
执行过程的实时透明性:在任务执行过程中,实时显示进度条与操作日志,用户可随时根据实际需求灵活暂停任务、调整参数,或是切换执行路径,无需重新从头开始,提高了操作的可控性与灵活性。
-
功能调用的灵活性:诸如RPA流程、大模型、知识库等功能,均可像搭积木一样自由组合,轻松完成智能体的搭建工作,为用户提供了高度灵活的定制化体验。
作为在自动化赛道深耕多年的厂商,实在智能积累了海量的自动化应用场景。这些丰富的应用场景作为企业的宝贵资产,在实在Agent客户端可实现一键调用与灵活搭配,再结合AI大模型,使得原有的自动化流程更具智能性,为企业提升效率、降低成本提供了有力支持。
三大技术组合,掌控万物
实在智能创始人兼CEO孙林君表示,目前海内外的Agent技术普遍存在一些缺陷,例如,端到端的模型解决方案在大模型陷入幻觉时,优化难度较大,过程难以控制;而大模型+API的解决方案则不符合系统“高内聚、低耦合”的设计原则,API接口越多,所需耗费的开发资源就越多,Agent成本也随之大幅上升。
对于这些缺陷,实在智能都有办法一一解决。
实在Agent智能体是基于TARS(实在智能自研垂直系列大模型)+ISSUT(智能屏幕语义理解技术)+RPA(自动化技术),拥有‘大脑’,更具备‘眼睛和手脚’的超自动化智能体。
TARS大模型在“技术实验室”与“客户真实场景”中不断优化迭代,在流程拆解、任务推理、代码生成等能力上,与各个SOTA模型不相上下,且在部分领域保持领先地位,这是实在智能技术突破的第一大关键。
基于智能屏幕语义理解技术,实在智能通过大规模、精心设计的GUI Agent流程数据集进行训练,并引入视觉思维链Vision-CoT训练策略,结合可变形矩形卷积等辅助技术,训练出多模态大模型TARS - VL。
TARS - VL模型具备对数字化办公世界中的网页、软件、接口、文档、SDK等任意工具的强大链接能力,这是实在智能技术突破的第二大关键。
经测试比对,TARS - VL的准确率相较于GPT - 4o高出 4%,与其他开源模型相比,更是领先达10%,在同类型模型中优势显著。
围绕超1000款常用软件,实在智能探索出自动化构建与强化训练的技术路线,同时运用自动仿真技术,高效模拟用户行为,详细记录环境信息。
借助这些技术,实在Agent将特定软件的构建周期大幅缩短至3-5天,极大地提升了其在真实业务场景中的落地应用能力。这是实在智能技术突破的第三大关键。
此外,在增强实在Agent稳定性与实用性方面,实在智能还开展了诸多工程创新。例如,运用多模型混合策略,有效应对企业长尾需求,降低企业对硬件资源的依赖;训练不同参数规模的模型,适配客户在端侧与云侧的不同硬件配置;整合DeepSeek、企业大脑以及实在Agent,推出软硬件一体化解决方案,为企业提供更加全面、可靠的智能体服务。
是个人助手,也是企业大脑
企业大脑,是实在智能的又一次“出奇制胜”。
当通用Agent厂商还在全力争夺C端用户注意力时,实在智能已悄然以“企业大脑”的角色,开启AI应用在企业级市场的下半场竞争。
在发布会上,实在智能抛出了一个关键的行业命题:当企业级AI应用面临“能用但不好用”的困境时,如何通过技术栈重构实现从“工具”到“生产力”的质的飞跃?
当前,AI在企业场景的渗透率已突破43%(据IDC数据),然而实际应用效果却不尽如人意。调研发现,超过60%的企业CIO面临着三大困境:一是知识资产孤岛化,各部门散落的文档、系统数据难以形成有效的决策合力;二是业务场景割裂化,智能体仅能处理单一环节,无法实现跨系统协同;三是数据主权焦虑症,公有云部署带来的合规风险与成本失控问题。
针对这些产业级痛点,实在智能推出的“企业大脑”构建了独特的四层架构:
-
知识资产沉淀系统(RAG+AI):通过自研的知识增强检索技术,将散落的产品文档、ERP数据、操作手册等结构化与非结构化数据转化为可计算的知识图谱,实现知识资产的有效整合与利用。
-
业务流程数字孪生:基于可视化的智能体画布,企业能够将AI与主流业务系统深度集成,构建符合自身业务特色的操作流程,每个员工在实在Agent客户端可随时调用这些流程,实现业务流程智能化。
-
模型生态适配平台:独创的模型沙箱环境允许企业安全测试不同大模型性能,TARS、智谱AI、GPT、DeepSeek等大模型,企业可根据自身需求灵活切换,为企业提供了更多的选择与适配空间。
-
安全合规底座:在数据安全与自主可控成为企业刚需的背景下,实在智能体平台支持私有化部署与国产化适配,确保数据传输、存储全链路安全,为企业的数据安全保驾护航。
实在智能已在Agent混战中拔得头筹:通过技术架构创新解决企业级智能体的三大核心矛盾 —— 知识资产的碎片化与决策需求的系统化、通用模型的标准化与业务场景的定制化、公有云部署的便捷性与数据主权的敏感性。
话虽如此,但实在智能能否成为Agent时代的主角,显然还需要更多时间来证明。
在AI应用从“可用”到“好用”的进化过程中,真正的胜者将是那些能够把AI能力转化为可量化商业价值的参与者。
实在智能已在这轮Agent智能体军备竞赛中崭露头角。从RPA数字员工追赶,到IPA数字员工超越,再到Agent数字员工引领,实在智能多年来光环与争议并存,无数双眼睛正在盯着实在智能在这次Agent浪潮中会如何表现。
尽管实在智能在技术与应用方面取得了显著进展,但在竞争激烈的Agent时代,其能否成为真正的主角,仍需时间的检验与市场的进一步验证。在未来的发展中,实在智能将面临诸多挑战,如持续的技术创新、市场份额的进一步拓展、客户需求的深度满足等。
可喜的是,实在智能已展现出的技术实力与创新精神,无疑为其在Agent时代的发展奠定了坚实基础,值得行业持续关注。