原题:
提交: 38 解决: 19
[ 提交][ 状态][ 讨论版]
1309: 均分纸牌
时间限制: 1 Sec 内存限制: 128 MB提交: 38 解决: 19
[ 提交][ 状态][ 讨论版]
题目描述
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入
第一行为一个整数N(N 堆纸牌,1 <= N <= 100)
第二行有N个整数A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出
所有堆均达到相等时的最少移动次数。
样例输入
49 8 17 6
样例输出
3
提示
来源
要均分,那么只要将每堆牌减去平均数即可,如果为0,则这堆牌已分好
注意判断0就可以了
类型:贪心
时间:2014.4.5
源码:
#include<cstdio>
#include<iostream>
using namespace std;
int a[10001],ave=0;
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++) { cin>>a[i]; ave+=a[i]; }
ave/=n;
for(int i=1;i<=n;i++) { a[i]-=ave; }
int i=1,j=n,count=0;
while(a[i]==0&&i<n) { i++; }
while(a[j]==0&&j>1) { j--; }
while(i<j)
{
a[i+1]+=a[i];
a[i]=0;
count++;
i++;
while(a[i]==0&&i<j) { i++; }
}
cout<<count;
return 0;
}