[贪心]NOIP2002 均分纸牌

原题:

1309: 均分纸牌

时间限制: 1 Sec   内存限制: 128 MB
提交: 38   解决: 19
[ 提交][ 状态][ 讨论版]

题目描述

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入

第一行为一个整数N(N 堆纸牌,1 <= N <= 100)
第二行有N个整数A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出

所有堆均达到相等时的最少移动次数。

样例输入

49 8 17 6

样例输出

3

提示

来源


要均分,那么只要将每堆牌减去平均数即可,如果为0,则这堆牌已分好

注意判断0就可以了


类型:贪心


时间:2014.4.5


源码:

#include<cstdio>
#include<iostream>
using namespace std;

int a[10001],ave=0;

int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) { cin>>a[i]; ave+=a[i]; }
	ave/=n;
	for(int i=1;i<=n;i++) { a[i]-=ave; }
	int i=1,j=n,count=0;
	while(a[i]==0&&i<n) { i++; }
	while(a[j]==0&&j>1) { j--; }
	while(i<j)
	{
		a[i+1]+=a[i];
		a[i]=0;
		count++;
		i++;
		while(a[i]==0&&i<j) { i++; }
	}
	cout<<count;
	return 0;
}


You'll need Skype Credit Free via Skype
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值