给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
(1)dp数组
dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]
具体可以区分出如下四个状态:
0:状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
1:状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
2:状态三:今天卖出股票
3:状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
:
(2)递推公式
买入股票状态(状态一)即:dp[i][0],有两个具体操作:
操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0];
操作二:今天买入了,有两种情况:
1.前一天是冷冻期(状态四),dp[i - 1][3] - prices[i];
2.前一天是保持卖出股票的状态(状态二),dp[i - 1][1] - prices[i]。
那么dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]);
保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:
操作一:前一天就是状态二;
操作二:前一天是冷冻期(状态四)。
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:昨天一定是持有股票状态(状态一),今天卖出,即:dp[i][2] = dp[i - 1][0] + prices[i];
冷冻期状态(状态四),即:dp[i][3],只有一个操作:昨天卖出了股票(状态三)。dp[i][3] = dp[i - 1][2];
(3)初始化
持有股票状态(状态一)那么:dp[0][0] = -prices[0]
保持卖出股票状态(状态二)只能初始为0
今天卖出了股票(状态三),同上分析,dp[0][2]初始化为0,dp[0][3]也初始为0
(4)遍历顺序
从前向后
代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (n == 0) return 0;
vector<vector<int>> dp(n, vector<int>(4, 0));
dp[0][0] -= prices[0]; // 持股票
for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));
}
};
我的思路是如果第i天保持股票持有状态,那么要么i-1天就持有股票,要么i-1未持有股票,今天购买:i-1天未持有股票要么是在冷冻期,要么是i-2天也没有股票,递推公式相当于dp[i][0] = max(dp[i - 1][0], dp[i - 2][1] - prices[i]);
初始化需要初始化第一天和第二天的情况
代码如下:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int len = prices.size();
if (len == 1)
return 0;
vector<vector<int>> dp(len, vector<int>(2, 0));
dp[0][0] = -prices[0];
dp[0][1] = 0;
dp[1][0] = max(dp[0][0], -prices[1]);
dp[1][1] = max(dp[0][1], dp[0][0] + prices[1]);
for (int i = 2; i < len; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 2][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
}
return dp[len - 1][1];
}
};