1. 求解模线性方程
费马小定理:设a,p为正整数,且p为素数,(p,a)=1,那么a^(p-1)≡1 (mod p)
剩余类:对于整数a及模m,则集合A={x|x≡a(mod m)}称为模m关于a的一个剩余类
简化剩余系:设m为正整数,在与m互质的所有剩余类中,每一个类中取一个数,构成一个集合X,则X称为模m的一个简化剩余系。
模线性方程ax≡b(mod m)的解:
化为ax+my=b
(1) 求d=gcd(a,m)
(2) 若d是b的因数,继续(3)。否则无解
(3) 求ax0+my0=d
(4) x=x0*b/d; y=y0*a/d;
(5) x=(x+k*m/d) (mod m) 所以x一共有d个值,分别为k取0,1,2,3~d-1
2. 求 mod m的逆元
对于整数a,m,如果存在整数b,满足ab≡1(mod m),那么称b是a的模m乘法逆元。
要有解,当且仅当gcd(a,m)=1
例题:输入a,m,求相应的乘法逆元,若不存在,输出0
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<ctype.h>
#include<algorithm>
#include<string>
#define PI acos(-1.0)
using namespace std;
long long a,m,d,x,y;
long long ex_gcd(long long a, long long b, long long &d, long long &x, long long &y)
{
if (!b)
{
x=1;
y=0;
d=a;
}
else
{
ex_gcd(b,a%b,d,y,x);
y-=(a/b)*x;
}
}
int main ()
{
while(cin>>a>>m)
{
if (a==m && a==0) break;
ex_gcd(a,m,d,x,y);
if (d==1)
{
x=(x%m+m)%m;
cout<<x<<endl;
}
else cout<<0<<endl;
}
return 0;
}
3. 模线性方程组与中国剩余定理
中国剩余定理
有以下一组模线性方程,求x
x≡b1(mod m1)
x≡b2(mod m2)
.
.
.
x≡bn(mod mn)
解为:x0≡(b1*M1*y1+b2*M2*y2+……+bn*Mn*yn) mod m 其中Mi=(m1*m2*m3*……*mn)/mi。而Mi*yi≡1(mod mi)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#include<ctype.h>
#include<algorithm>
#include<string>
#define PI acos(-1.0)
using namespace std;
long long m[100],b[100],n;
long long d,x,y;
void ex_gcd(long long a, long long b, long long &d, long long &x, long long &y)
{
if (!b)
{
d=a;
x=1;
y=0;
}
else
{
ex_gcd(b,a%b,d,y,x);
y-=(a/b)*x;
}
}
long long chinaR()
{
long long mm=1,a=0;
int i;
for (i=0; i<n; i++)
mm*=m[i];
for (i=0; i<n; i++)
{
long long M=mm/m[i];
ex_gcd(M,m[i],d,x,y);
a=(a+(x%mm)*M*b[i])%mm;
}
return (a%mm+mm)%mm;
}
int main ()
{
while(cin>>n)
{
if (!n) break;
for (int i=0; i<n; i++)
cin>>m[i]>>b[i];
long long a=chinaR();
cout<<a<<endl;
}
return 0;
}