同余

数论中的重要概念。给定一个正整数m,如果二整数α、b)满足m│α-b)(α-b)被m整除),就称整数α、b)对模m同余,记作α呏b)(mod m)。对模m同余是整数的一个等价关系

同余符号

两个整数a,b,若它们除以整数m所得的余数相等,则称a与b对于 m同余或a同余于b模m
记作a ≡ b (mod m)
读作a同余于b模m,或读作a与b关于模m同余。
比如 26 ≡ 2 (mod 12)
【定义】设m是大于1的正整数,a,b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余.
显然,有如下事实
(1)若a≡0(mod m),则m|a;
(2)a≡b(mod m)等价于a与b分别用m去除,余数相同.
【证明】 充分性:设a=mq1+r1,b=mq2+r2,0<=r1,r2<m
∵ m|(a-b),a-b=m(q1-q2)+(r1-r2).
则有m|(r1-r2).
 
证明 】上述性质很容易证明,下面仅证明(3).
∵a≡b(mod m)∴m|(a-b) 同理m|(b-c),
∴m|[(a-b)+(b-c)]∴m|(a-c).
故a≡c(mod m).
线性运算如果a ≡ b (mod m),c ≡ d (mod m),那么(1)a ± c ≡ b ± d (mod m),(2)a * c ≡ b * d (mod m)
【证明】(1)∵a≡b(mod m),∴m|(a-b) 同理 m|(c-d)
∴m|[(a-b)±(c-d)] ∴m|[(a±c)-(b±d)]
∴a ± c ≡ b ± d (mod m)
(2)∵ac-bd=ac-bc+bc-bd=c(a-b)+b(c-d)
又 m|(a-b) , m|(c-d) ∴m|(ac-bd)
∴a * c ≡ b * d (mod m)
除法若ac ≡ bc (mod m) c!=0 则 a≡ b (mod m/(c,m)) 其中(c,m)表示c,m的 最大公约数
特殊地 (c,m)=1 则a ≡ b (mod m)
乘方如果a ≡ b (mod m),那么a^n ≡ b^n (mod m)
7 若a ≡ b (mod m),n|m,则 a ≡ b (mod n)

8 若a ≡ b (mod mi) i=1,2...n 则 a ≡ b (mod [m1,m2,...mn]) 其中[m1,m2,...mn]表示m1,m2,...mn的 最小公倍数
设a,m∈N,(a,m)=1,则a^(φ(m))≡1(mod m)
(注:φ(m)指模m的 简系个数, φ(m)=m-1, 如果m是素数;φ(m=q1^r1 * q2^r2 * ...*qi^ri)=m (1-1/q1)(1-1/q2)...(1-1/qi))
推论费马小定理: 若p为 质数,则a^p ≡ a (mod p) 即a^(p-1) ≡ 1 (mod p)
(但是当p|a时不 等价
10 中国剩余定理
设整数m1,m2,m3,......,mn 两两 互素,令m=m1m2m3m4m5...mn(mi的连乘)。则对于任意的J在(1,n)整数,下列联立的 同余式有解:
{xj≡1(mod mj)
{xj≡0(mod mi) i不等于j
令x为从1到najxj的 ,则x适合下列联立同余式
x≡aj(mod mj), j=1,2,3,.....,n
另:求 自然数a的 个位数字,就是求a与哪一个一位数对于模10同余

相关定理

一次 同余式孙子定理 同余式的求解中,一次同余式是最 基本的。设整系数 n次( n>0)多项式 ƒ( x)= αn x+…+ α1 x+ α0,m是一个 正整数且不能整除 αn,则
同余

  同余

(1)叫做模m 的 n同余式。如果整数  α是(1)的解且 αα┡(mod m),那么 α┡也是(1)的解,因此,(1)的不同解是指满足(1)的模 m互不同余的数。对于一次同余式  αxb(mod m)有解的充分必要条件是( α,m)│ b),若有解则有( α,m)个解。一次 同余式组是指
同余

  同余

同余

  同余

。 (2)
在中国古代《 孙子算经》中,对某些具体的一次 同余式组已有解法,把这一解法加以推广,就是著名的孙子剩余定理:设m1, m2,…, mk是 k个两两互素的 正整数
同余

  同余

,
同余式组(2)的解是
同余

  同余

,
式中。孙子剩余定理又被称之为中国剩余定理,是数论中一个重要的定理,除了数论本身,数学的许多其他分支以及一些应用学科都要用到它。例如,设m=m1m2…mk,m1, m2,…,mk两两互素,利用孙子剩余定理可将同余式(1)的求解问题化为同余式组 ƒ( x)≡0(mod mi)( i=1,2,…, k)的求解问题,于是就只需要研究(1)中m是素数方幂的情形了。又如,可将0≤ x<m中的一切整数表示,这叫做模系数记数法,这里m=m1m2…mk,m1,m2,…,mk两两互素,而x吗示 x模mi的最小非负剩余。
如果已知 x的模系数 记数法,就可用孙子定理找出 x。这个记数法的优点是加法和 乘法无须进位,它在计算机方面有应用。
素数为模的 同余式  关于素数为模的同余式,1770年,J.-L.拉格朗日证明了如下 定理:设 p是素数,那么模 pn次同余式的解数不大于  n(重解也计算在内)。人们称之为 拉格朗日定理。由此立即可以得威尔森定理:如果  p是素数,那么( p-1)!+1≡0(mod  p)。因为 x-1≡0(mod  p)有 p-1个解1,…, p-1,故由拉格朗日定理可得
x^p-1-1≡( x-1)( x-2)…( x-( p-1))(mod  p),
x=0代入上式得-1≡(-1)( p-1)!(mod  p),这就证明了威尔森定理。威尔森定理的 逆定理也是成立的,可用 反证法简单证出。用 拉格朗日定理还可证明:当 p≥5是一个素数时,则有
同余

  同余

。这个定理是1862年,由J.沃斯顿霍姆证明的。
ƒ( x1, x2,…, xn)是 n元整系数多项式, p是一个奇素数,对于同余式 ƒ( x1, x2,…, xn) ≡0(mod  p)的解( x1, x2,…, xn)(0≤ xj< p, j=1,2,…, n)的个数 N的研究,是数论的重要课题之一。
早在1801年,C.F.高斯就研究了同余式 αx- b) y≡1(mod  p)的解的个数,这里 p≡1(mod 3)和同余式 αx- b) y≡1(mod  p)的解的个数,这里 p≡1(mod 4)。
ƒ( x)模  p无重因式,1924年,E.阿廷猜想同余式 yƒ( x)(mod  p),在 ƒ( x)的次数为3和4时, N分别满,1936年,H.哈塞证明了这一猜想,并且还证明了对于一般含 q个元的有限域,把以上两式中 p换成 q,也是对的。1948年,韦伊对于一般的 ƒ( x, y)=0在 有限域上得到类似的结果, 他猜想对于 ƒ( x1, x2,…, xn)=0也有类似的结果。1973年,P.德利涅证明了韦伊猜想。他的杰出工作获得了1978年的国际数学家会议的费尔兹奖。

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值