题目:http://poj.org/problem?id=2115
题意:对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束。若在有限次内结束,则输出循环次数。否则输出死循环。
思路:这道题是一个扩展欧几里德算法的拓展,求单变元模线性方程 即:Cx=(B-A)(mod 2^k)
扩展欧几里得算法和单变元模线性方程(传送门) + 比较详细的博客
代码:
/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, n) for (int i = 0; i < n; i++)
#define debug puts("===============")
#define eps (1e-6)
typedef long long ll;
using namespace std;
ll extend_gcd(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1, y = 0;
return a;
}
else {
ll r = extend_gcd(b, a % b, y, x);
y -= x * (a / b);
return r;
}
}
vector<ll> line_mod_equation(ll a, ll b, ll n) {
ll x, y;
ll d = extend_gcd(a, n, x, y);
vector<ll> ans;
ans.clear();
if (b % d == 0) {
x = (x % n + n) % n;
x %= (n / d);
ans.push_back(x * (b / d) % (n / d));
//for (ll i = 1; i < d; i++) ans.push_back((ans[0] + i * n / d) % n);
}
return ans;
}
int main () {
//freopen("2.txt", "w", stdout);
ll a, b, c, k;
while(scanf("%lld%lld%lld%lld", &a, &b, &c, &k) , a || b || c || k) {
ll n = 1LL << k;
ll p = ((b - a) % n + n) % n;
vector<ll> ans = line_mod_equation(c, p, n);
if (ans.size() == 0) puts("FOREVER");
else printf("%lld\n", ans[0]);
}
return 0;
}