POJ 2115 C Looooops

题目:http://poj.org/problem?id=2115

题意:对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束。若在有限次内结束,则输出循环次数。否则输出死循环。

思路:这道题是一个扩展欧几里德算法的拓展,求单变元模线性方程 即:Cx=(B-A)(mod 2^k) 

扩展欧几里得算法和单变元模线性方程(传送门) + 比较详细的博客

代码:

/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, n) for (int i = 0; i < n; i++)
#define debug puts("===============")
#define eps (1e-6)
typedef long long ll;
using namespace std;
ll extend_gcd(ll a, ll b, ll &x, ll &y) {
    if (b == 0) {
        x = 1, y = 0;
        return a;
    }
    else {
        ll r = extend_gcd(b, a % b, y, x);
        y -= x * (a / b);
        return r;
    }
}
vector<ll> line_mod_equation(ll a, ll b, ll n) {
    ll x, y;
    ll d = extend_gcd(a, n, x, y);
    vector<ll> ans;
    ans.clear();
    if (b % d == 0) {
        x = (x % n + n) % n;
        x %= (n / d);
        ans.push_back(x * (b / d) % (n / d));
        //for (ll i = 1; i < d; i++) ans.push_back((ans[0] + i * n / d) % n);
    }
    return ans;
}
int main () {
    //freopen("2.txt", "w", stdout);
    ll a, b, c, k;
    while(scanf("%lld%lld%lld%lld", &a, &b, &c, &k) , a || b || c || k) {
        ll n = 1LL << k;
        ll p = ((b - a) % n + n) % n;
        vector<ll> ans = line_mod_equation(c, p, n);
        if (ans.size() == 0) puts("FOREVER");
        else printf("%lld\n", ans[0]);
    }
    return 0;
}


POJ2251是一个经典的题目,也被称为"水仙花的谜题"。该题目要求在一个三维的迷宫中找到从起点到终点的最短路径。 在这个题目中,迷宫由一个3D的数组表示,每个位置上的值代表了该位置的状态。其中,0表示可以通过的路径,1表示墙壁,2表示起点,3表示终点。你需要编写一个程序来找到从起点到终点的最短路径,并输出路径的长度。 解决这个问题的一种常见方法是使用广度优先搜索(BFS)算法。BFS算法可以从起点开始,逐层遍历迷宫中的位置,直到找到终点或者遍历完所有可达位置。在遍历过程中,你需要记录每个位置的距离和路径信息,以便找到最短路径。 以下是解决该问题的大致思路: 1. 定义一个队列,将起点加入队列,并标记起点已访问。 2. 使用循环来遍历队列中的元素,直到队列为空。 3. 在循环中,取出队列中的元素,并获取其相邻可达位置。 4. 对于每个相邻位置,判断是否为终点,如果是则输出最短路径长度并结束程序。 5. 如果不是终点,则判断该位置是否为可通过的路径,并且未被访问过。如果满足条件,则将该位置加入队列,并更新距离和路径信息。 6. 重复步骤2-5,直到找到终点或者遍历完所有可达位置。 这只是一个简单的介绍,实际解决该问题还需要考虑一些细节,比如如何表示迷宫、如何判断位置的合法性等。你可以在编写代码时参考相关的算法和数据结构知识。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值