论文标题
Few-Shot Adversarial Prompt Learning on Vision-Language Models 少样本对抗式提示学习在视觉语言模型上的应用
论文链接
Few-Shot Adversarial Prompt Learning on Vision-Language Models论文下载
论文作者
Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, Tongliang Liu
内容简介
本文提出了一种少样本对抗式提示学习框架(FAP),旨在提高视觉语言模型(VLMs)在对抗性样本下的鲁棒性。现有方法在对抗性适应中存在适应成本高、文本监督效果不佳和自然泛化能力受限等问题。FAP框架通过使用有限的数据调整输入序列,显著提升了对抗鲁棒性。该框架通过从对抗样本中端到端学习对抗性文本监督,提供了更优的跨模态对抗对齐能力,并在仅使用1%训练数据的情况下,达到了最先进的零样本对抗鲁棒性。本文还提出了一种新颖的训练目标,增强了多模态特征的一致性,同时鼓励自然和对抗样本之间的单模态特征差异化。
分点关键点
-
FAP框架的提出
- FAP框架通过少样本学习的方式,利用对抗性相关的文本监督来提升视觉语言模型的对抗鲁棒性。该框架的设计旨在减少对大量数据的依赖,并通过学习对抗性文本监督来实现更好的对齐。
-
对抗性文本监督的学习
- 该框架通过从对抗样本中端到端学习对抗性文本监督,显著改善了视觉和文本嵌入之间的对齐。这种方法使得模型能够在仅使用少量样本的情况下,达到与传统方法相当的对抗鲁棒性。
- 该框架通过从对抗样本中端到端学习对抗性文本监督,显著改善了视觉和文本嵌入之间的对齐。这种方法使得模型能够在仅使用少量样本的情况下,达到与传统方法相当的对抗鲁棒性。
-
新颖的训练目标
- 提出的训练目标通过引入自然和对抗样本的区分,促进了多模态特征的一致性,同时鼓励单模态特征的差异化。这种设计有助于避免在对抗性适应过程中对自然泛化能力的损害。
- 提出的训练目标通过引入自然和对抗样本的区分,促进了多模态特征的一致性,同时鼓励单模态特征的差异化。这种设计有助于避免在对抗性适应过程中对自然泛化能力的损害。
-
实验验证与结果
- 通过在11个基准数据集上的实验,FAP框架在对抗性少样本学习、对抗性零样本迁移和基础到新泛化设置中,显著超越了现有的对抗性提示学习方法,证明了其有效性和优越性。
论文代码
代码链接:https://github.com/lionel-w2/FAP
中文关键词
- 少样本学习
- 对抗性提示学习
- 视觉语言模型
- 对抗鲁棒性
- 文本监督
- 多模态特征
Neurlps2024论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!