Neurlps2024论文解析|Few-Shot Adversarial Prompt Learning on Vision-Language Models

论文标题

Few-Shot Adversarial Prompt Learning on Vision-Language Models 少样本对抗式提示学习在视觉语言模型上的应用

论文链接

Few-Shot Adversarial Prompt Learning on Vision-Language Models论文下载

论文作者

Yiwei Zhou, Xiaobo Xia, Zhiwei Lin, Bo Han, Tongliang Liu

内容简介

本文提出了一种少样本对抗式提示学习框架(FAP),旨在提高视觉语言模型(VLMs)在对抗性样本下的鲁棒性。现有方法在对抗性适应中存在适应成本高、文本监督效果不佳和自然泛化能力受限等问题。FAP框架通过使用有限的数据调整输入序列,显著提升了对抗鲁棒性。该框架通过从对抗样本中端到端学习对抗性文本监督,提供了更优的跨模态对抗对齐能力,并在仅使用1%训练数据的情况下,达到了最先进的零样本对抗鲁棒性。本文还提出了一种新颖的训练目标,增强了多模态特征的一致性,同时鼓励自然和对抗样本之间的单模态特征差异化。
在这里插入图片描述

分点关键点

  1. FAP框架的提出

    • FAP框架通过少样本学习的方式,利用对抗性相关的文本监督来提升视觉语言模型的对抗鲁棒性。该框架的设计旨在减少对大量数据的依赖,并通过学习对抗性文本监督来实现更好的对齐。
  2. 对抗性文本监督的学习

    • 该框架通过从对抗样本中端到端学习对抗性文本监督,显著改善了视觉和文本嵌入之间的对齐。这种方法使得模型能够在仅使用少量样本的情况下,达到与传统方法相当的对抗鲁棒性。
      在这里插入图片描述
  3. 新颖的训练目标

    • 提出的训练目标通过引入自然和对抗样本的区分,促进了多模态特征的一致性,同时鼓励单模态特征的差异化。这种设计有助于避免在对抗性适应过程中对自然泛化能力的损害。
      在这里插入图片描述
  4. 实验验证与结果

    • 通过在11个基准数据集上的实验,FAP框架在对抗性少样本学习、对抗性零样本迁移和基础到新泛化设置中,显著超越了现有的对抗性提示学习方法,证明了其有效性和优越性。

论文代码

代码链接:https://github.com/lionel-w2/FAP

中文关键词

  1. 少样本学习
  2. 对抗性提示学习
  3. 视觉语言模型
  4. 对抗鲁棒性
  5. 文本监督
  6. 多模态特征

Neurlps2024论文合集:

Neurlps2024论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值