ECCV论文合集解析|3D Small Object Detection with Dynamic Spatial Pruning-water-merged

论文标题

3D Small Object Detection with Dynamic Spatial Pruning 三维小物体检测的动态空间剪枝

论文链接

3D Small Object Detection with Dynamic Spatial Pruning论文下载

论文作者

Xiuwei Xu, Zhihao Sun, Ziwei Wang, Hongmin Liu, Jie Zhou, Jiwen Lu

内容简介

本文提出了一种高效的特征剪枝策略,旨在解决三维小物体检测中的挑战。传统的三维物体检测方法在处理小物体时表现不佳,主要由于小物体的点云数量少,几何信息弱。尽管提高特征表示的空间分辨率可以改善小物体的检测性能,但随之而来的计算开销往往难以承受。为此,本文提出了一种名为DSPDet3D的多级三维检测器,利用动态空间剪枝(DSP)策略,专注于小物体区域,从而减少冗余计算。通过在ScanNet和TO-SCENE数据集上的实验,DSPDet3D在小物体检测方面取得了领先的性能,并且在处理大规模场景时表现出良好的泛化能力。在这里插入图片描述

分点关键点在这里插入图片描述

  1. 动态空间剪枝策略

    • 本文提出的动态空间剪枝(DSP)策略通过根据物体分布动态修剪冗余的空间表示,显著减少了计算量。该策略在每个检测层级中检测出物体后,剪除不必要的体素特征,从而提高了检测效率。
  2. DSPDet3D检测器

    • DSPDet3D是基于多级检测框架构建的,能够在高空间分辨率下实现小物体的高精度检测。该检测器通过动态剪枝模块,专注于小物体区域,避免了在无小物体区域的冗余计算。
  3. 实验结果

    • 在ScanNet和TO-SCENE数据集上,DSPDet3D在所有类别的mAP上提高了3%,在小物体的mAP上提高了14%。此外,该方法在推理速度上也优于其他主流室内三维物体检测方法,能够在不到2秒的时间内处理包含超过4500k点的完整建筑。
  4. 泛化能力

    • DSPDet3D在仅使用ScanNet房间进行训练的情况下,能够良好地泛化到更大规模的场景,显示出其在实际应用中的潜力。在这里插入图片描述

论文代码

代码链接:https://github.com/your-repo-link (请根据实际情况替换为真实链接)

中文关键词

  1. 三维小物体检测
  2. 动态空间剪枝
  3. 高效推理
  4. 多级检测器
  5. 计算开销
  6. 泛化能力

ECCV论文合集:

ECCV论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值