ECCV2024论文解析|OneRestore A Universal Restoration Framework for Composite Degradation-water-merged

论文标题

OneRestore: A Universal Restoration Framework for Composite Degradation OneRestore:一种用于复合材料降解的通用修复框架

论文链接

OneRestore: A Universal Restoration Framework for Composite Degradation论文下载

论文作者

Yu Guo, Yuan Gao, Yuxu Lu, Huilin Zhu, Ryan Wen Liu, Shengfeng He

内容简介

本文提出了OneRestore,一个通用的图像恢复框架,旨在处理复合降解问题。现实场景中的图像损伤通常表现为多种降解因素的复杂交互,如低光、雾霾、雨雪等。现有的恢复方法通常针对单一降解类型,无法有效应对多种降解因素共存的情况。OneRestore通过整合四种物理降解模型,采用基于Transformer的架构,利用独特的交叉注意力机制,将退化场景描述符与图像特征相结合,实现自适应和可控的场景恢复。该框架支持多种输入场景描述符,包括手动文本嵌入和基于视觉属性的自动提取。通过在合成和真实数据集上的比较实验,OneRestore在处理复杂复合降解方面显著提升了现有技术水平。在这里插入图片描述

分点关键点在这里插入图片描述

  1. OneRestore框架

    • OneRestore是一个基于Transformer的通用恢复架构,旨在处理复合降解问题。它通过交叉注意力机制将场景描述符与图像特征融合,支持多种输入形式,增强了图像恢复的灵活性和可控性。
  2. 复合降解模型

    • 本文整合了低光、雾霾、雨和雪四种物理降解模型,构建了一个通用的成像模型,能够准确模拟复杂的复合降解场景。这一模型为构建复合降解数据集(CDD-11)奠定了基础。
  3. 场景描述符生成

    • OneRestore允许用户通过手动输入或自动提取视觉属性生成场景描述符。这种灵活性使得模型能够根据用户需求进行精确的图像恢复。
  4. 复合降解恢复损失

    • 为了增强模型的鲁棒性,本文提出了一种复合降解恢复损失,利用额外的退化图像作为负样本,强化模型的约束能力。这种损失函数有效地提高了图像恢复的性能。
  5. 实验结果

    • 在合成和真实数据集上的实验结果表明,OneRestore在处理复杂复合降解方面表现优异,显著超越了现有的最佳基线方法,展示了其在实际应用中的潜力。在这里插入图片描述

论文代码

代码链接:https://github.com/gy65896/OneRestore

中文关键词

  1. 复合降解
  2. 图像恢复
  3. Transformer
  4. 交叉注意力机制
  5. 场景描述符
  6. 复合降解恢复损失

ECCV论文合集:

ECCV论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值