论文标题
OneRestore: A Universal Restoration Framework for Composite Degradation OneRestore:一种用于复合材料降解的通用修复框架
论文链接
OneRestore: A Universal Restoration Framework for Composite Degradation论文下载
论文作者
Yu Guo, Yuan Gao, Yuxu Lu, Huilin Zhu, Ryan Wen Liu, Shengfeng He
内容简介
本文提出了OneRestore,一个通用的图像恢复框架,旨在处理复合降解问题。现实场景中的图像损伤通常表现为多种降解因素的复杂交互,如低光、雾霾、雨雪等。现有的恢复方法通常针对单一降解类型,无法有效应对多种降解因素共存的情况。OneRestore通过整合四种物理降解模型,采用基于Transformer的架构,利用独特的交叉注意力机制,将退化场景描述符与图像特征相结合,实现自适应和可控的场景恢复。该框架支持多种输入场景描述符,包括手动文本嵌入和基于视觉属性的自动提取。通过在合成和真实数据集上的比较实验,OneRestore在处理复杂复合降解方面显著提升了现有技术水平。
分点关键点
-
OneRestore框架
- OneRestore是一个基于Transformer的通用恢复架构,旨在处理复合降解问题。它通过交叉注意力机制将场景描述符与图像特征融合,支持多种输入形式,增强了图像恢复的灵活性和可控性。
-
复合降解模型
- 本文整合了低光、雾霾、雨和雪四种物理降解模型,构建了一个通用的成像模型,能够准确模拟复杂的复合降解场景。这一模型为构建复合降解数据集(CDD-11)奠定了基础。
-
场景描述符生成
- OneRestore允许用户通过手动输入或自动提取视觉属性生成场景描述符。这种灵活性使得模型能够根据用户需求进行精确的图像恢复。
-
复合降解恢复损失
- 为了增强模型的鲁棒性,本文提出了一种复合降解恢复损失,利用额外的退化图像作为负样本,强化模型的约束能力。这种损失函数有效地提高了图像恢复的性能。
-
实验结果
- 在合成和真实数据集上的实验结果表明,OneRestore在处理复杂复合降解方面表现优异,显著超越了现有的最佳基线方法,展示了其在实际应用中的潜力。
- 在合成和真实数据集上的实验结果表明,OneRestore在处理复杂复合降解方面表现优异,显著超越了现有的最佳基线方法,展示了其在实际应用中的潜力。
论文代码
代码链接:https://github.com/gy65896/OneRestore
中文关键词
- 复合降解
- 图像恢复
- Transformer
- 交叉注意力机制
- 场景描述符
- 复合降解恢复损失
ECCV论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!