论文标题
StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements StyleStudio:基于文本驱动的风格迁移,并可选择性控制风格元素
论文链接
StyleStudio: Text-Driven Style Transfer with Selective Control of Style Elements论文下载
论文作者
Mingkun Lei, Xue Song, Beier Zhu, Hao Wang, Chi Zhang
内容简介
本文提出了一种新的文本驱动风格迁移方法StyleStudio,旨在将参考图像的风格与文本提示描述的内容有效融合。尽管近年来文本到图像模型的进展提高了风格转换的细致程度,但仍面临过度拟合、风格控制不足和文本内容不一致等挑战。为了解决这些问题,本文提出了三种互补策略:首先,引入跨模态自适应实例归一化(AdaIN)机制,以更好地整合风格和文本特征;其次,开发了一种基于风格的无分类器引导(SCFG)方法,允许对风格元素进行选择性控制;最后,在早期生成阶段引入教师模型,以稳定空间布局并减轻伪影。通过广泛的评估,结果表明,StyleStudio显著提高了风格迁移质量和与文本提示的一致性,并且可以无缝集成到现有的风格迁移框架中,无需微调。
分点关键点
-
跨模态自适应实例归一化(AdaIN)
- 本文提出的AdaIN机制通过将风格图像特征与文本特征进行有效整合,增强了生成过程中的对齐度。这种方法避免了传统加权求和策略的局限性,使得风格和文本特征能够更好地互补。
-
基于风格的无分类器引导(SCFG)
- SCFG方法允许用户对风格元素进行选择性控制,减少无关风格特征的影响。通过生成一个“负面”图像,SCFG能够专注于目标风格元素,从而提高生成图像的质量。
-
教师模型的引入
- 在生成的早期阶段,教师模型通过共享空间注意力图来稳定布局,确保生成图像的结构一致性。这种方法有效减轻了生成过程中的伪影问题,如棋盘格效应。
-
广泛的评估与应用
- 通过对多种风格和文本提示的评估,StyleStudio显著提高了生成图像的对齐度和质量。此外,该方法具有良好的适应性,可以集成到现有的风格迁移框架中,且无需进行微调。
- 通过对多种风格和文本提示的评估,StyleStudio显著提高了生成图像的对齐度和质量。此外,该方法具有良好的适应性,可以集成到现有的风格迁移框架中,且无需进行微调。
中文关键词
- 文本驱动风格迁移
- 自适应实例归一化
- 无分类器引导
- 教师模型
- 风格控制
- 生成图像质量
CVPR论文合集:
希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!