初战推荐系统

这个暑期里,我的主要工作是学习推荐系统的算法和建立相应模型。今天这篇文章我将会介绍其中比较基础的模型:协同过滤。协同过滤分为三种:基于用户,基于物品,基于模型。我主要使用的是前两种。他们的原理都很相似,就是计算用户或物品之间的相似性,(相似度越高,越可能被推荐)以此来产生推荐列表。在计算相似性的过程中,选择不同的相似性算法能够产生不同的推荐结果。这里我采用的是共同邻居和CN指标的另一个计算方法余弦相似性,公式如下:
这里写图片描述
这里写图片描述
因为网站上已经有大量且重复的关于协同过滤的详细介绍,就不在此赘述。该篇文章只是我作为训练和交流的一个展示。
数据来源MovieLens

下面是我建模的思路:
1. 根据时间戳这个变量对原始数据进行训练集和测试集的划分,以90%为分界点,取其前90%(早发生)的数据为训练集,剩余10%(晚发生)的数据为测试集。
2. 根据数据集建立用户-电影的矩阵。
3. 分别为用户和物品建立基于共同邻居和余弦相似性的相似性矩阵
4. 根据相似性矩阵依次生成推荐列表


基于用户的协同过滤

找出目标用户没有看过的电影,并依照用户相似性矩阵找出该用户与所有用户的相似性之和(A);再创建一个列表来存储目标用户没有看过,但其他用户看过的电影;根据这个列表和用户间的相似性矩阵,计算出看过目标用户未看过电影的用户相似性之和(B),最后B/A得到目标用户没看过电影的推荐分数列表(按降序排列)。

这里我只展示了基于用户并使用共同邻居指标的推荐列表生成代码

def recommenduserCN(ID):
    unwatched = np.where(ums_matrix[np.where(train_user_array==ID)[0][0]]==0)# 得到ID用户没看过的电影ID    scores=[]
    sim=0
    sim_sum=sum(user2user[np.where(train_user_array==ID)[0][0]])
    for i in range(0,len(unwatched[0])):
        others_watched=np.where(ums_matrix[:,unwatched[0][i]]==1) # 得到ID用户没看过,但其他人看过的用户ID
        for w in others_watched[0]:
            sim += user2user[np.where(train_user_array==ID)[0][0]][w] # 得到与每位看过ID用户没看过的电影的用户相似性总和
            if w == others_watched[0][-1]:
                scores.append([train_movie_array[unwatched[0][i]],sim/sim_sum]) # 除以该用户和所有其他用户的相似性总和,得到每一部电影的相似性
                sim = 0
    sort_unwatched=sorted(scores, key=itemgetter(1),reverse=True)# 以分数为标准,从大到小排列
    return sort_unwatched

基于电影的协同过滤:

大致思维与基于用户的协同过滤类似:先找出目标用户未看过的电影,和目标用户看过的电影;根据电影间的相似性矩阵,计算出未看过与看过的电影的相似性之和,再用它除以未看过电影与所有电影相似性之和,这样就得到了每部未看过电影的推荐分数列表。

这里我只展示了基于电影并使用共同邻居指标的推荐列表生成代码

def recommenditemCN(ID):
    unwatched = np.where(ums_matrix[np.where(train_user_array==ID)[0][0]]==0) # 得到ID用户没看过的电影ID
    other_movie_watched=np.where(ums_matrix.T[:,np.where(train_user_array==ID)[0][0]]==1)#将矩阵颠倒顺序,找出ID用户看过的电影ID
    scores=[]
    sim=0
    for i in range(0,len(unwatched[0])): 
        for w in range(0,len(other_movie_watched)): # 计算未看过的电影与看过电影的相似性之和
            sim += movie2movie[unwatched[0][i]][other_movie_watched[0][w]]
            if w+1 == len(other_movie_watched):
                scores.append([train_movie_array[unwatched[0][i]],[sim/sum(movie2movie[unwatched[0][i]])]]) # 计算出该部未看过电影的推荐指数
                sim = 0
    sort_unwatched=sorted(scores, key=itemgetter(1),reverse=True)
    return sort_unwatched

小结

协同过滤算法是推荐系统里最基础且较原始的一种算法。其中,基于物品的CF又优于基于用户的CF,原因在于前者能够有效解决冷启动的问题(Cold-start),同时前者的推荐列表也更会符合用户的个性,能带来更好的用户体验。

本人为初学者,在代码和理论方面都会有不足,欢迎交流讨论,多多指教。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!
提供的源码资源涵盖了小程序应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 适合毕业设计、课程设计作业。这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。 所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值