题目描述 Description
给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大
输入描述 Input Description
第一行两个数n,k(1<=n<=50, 0<=k<=10)
接下来n行,每行n个数,分别表示矩阵的每个格子的数
输出描述 Output Description
一个数,为最大和
样例输入 Sample Input
3 1
1 2 3
0 2 1
1 4 2
样例输出 Sample Output
11
数据范围及提示 Data Size & Hint
1<=n<=50, 0<=k<=10
题解
既然要走k次,那就不能用dp辣,只能用网络流做。
一开始想搞一个最大流,胡思乱想之后发现不可行,又开始yy费用流,一脸可行的样子,,
诶?这样的话最小费用最大流搞不出来啊?
原来这是一道最大费用最大流
SMG?
有学过咩?
四处膜拜资料,得到方法将正变负,负变正跑普通最小费用最大流,并且负边权所在边的流量只能为一(因为方格中的数只能被取走一次),再加一条方向相同,边权为0,流量为INF的边(跑过第一遍SPFA以后对于已经被取走数字的方格就只能走这条边了,相当于仅仅是路过)就可以辣!
ps:拆点拆点!
蒟蒻不会将反向边边权设为正导致RE++QAQ
CODE:
#include<cstdio>
#include<cstring>
const int INF=1e9;
struct queue
{
int h,t;
int a[500001];
inline void clear(){h=1,t=0;}
inline void push(int n){a[++t]=n;}
inline int front(){
return a[h];}
inline void pop(){h++;}
inline bool empty(){
return h>t;}
}q;
struct edge
{
in