HDU2767 Proving Equivalences

传送门
Problem Description
Consider the following exercise, found in a generic linear algebra textbook.
Let A be an n × n matrix. Prove that the following statements are equivalent:
1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:
* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
Output
Per testcase:
* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
Sample Input
2
4 0
3 2
1 2
1 3
Sample Output
4
2
Source
NWERC 2008

题目大意

给你n个点,m条有向边,让你连接最少的边使得整个图变成强连通图。(多组数据)

题解

看到题立刻会想到其中有可能有一些子图已经是强联通的了,所以我们先进行一次缩点,剩下一个DAG。我一开始的想法是将所有入度为0和出度为0的点数各减1然后分别和0取max再相加再减1,想把这些点构成一个环,但实际上正确的做法应该是将入度为0的点数和出度为0的点数取max输出。因为如果要将原图构成强连通图,只需要让每一个点的入度和出度都不为0就好了,所以就得到了上面的结论(一定能够找到一种连接方法使得其符合要求)。如果原图已经是强联通的了,输出0。

CODE:

#include<cstdio>
#include<cstring>
const int N=2e4+10;
const int M=5e4+10;
struct edge
{
    int nxt,to;
}a[M],e[M<<5];
int head[N],Head[N];
int s[N],top;
bool instack[N];
int dfn[N],low[N];
int in[N],out[N];
int block[N];
int q,n,m,x,y,num,Num,tot,Time,numin,numout;
inline int max(const int &a,const int &b){return a>b?a:b;}
inline int min(const int &a,const int &b){return a<b?a:b;}
inline void add1(int x,int y)
{
    a[++num].nxt=head[x],a[num].to=y,head[x]=num;
}
inline void add2(int x,int y)
{
    e[++Num].nxt=Head[x],e[Num].to=y,Head[x]=Num;
}
void dfs(int now)
{
    dfn[now]=low[now]=++Time;
    s[++top]=now;
    instack[now]=1;
    for(int i=head[now];i;i=a[i].nxt)
      if(!dfn[a[i].to])
      {
        dfs(a[i].to);
        low[now]=min(low[now],low[a[i].to]);
      }
      else if(instack[a[i].to]) low[now]=min(low[now],dfn[a[i].to]);
    if(low[now]==dfn[now])
    {
        int tmp;
        tot++;
        do
        {
            tmp=s[top--];
            instack[tmp]=0;
            block[tmp]=tot;
        }while(tmp!=now);
    }
}
int main()
{
    scanf("%d",&q);
    while(q--)
    {
        scanf("%d%d",&n,&m);
        memset(head,0,sizeof(head));
        memset(Head,0,sizeof(Head));
        memset(dfn,0,sizeof(dfn));
        memset(in,0,sizeof(in));
        memset(out,0,sizeof(out));
        num=tot=top=Time=numin=numout=0;
        for(int i=1;i<=m;i++)
          scanf("%d%d",&x,&y),add1(x,y);
        for(int i=1;i<=n;i++)
          if(!dfn[i]) dfs(i);
        if(tot==1) printf("0\n");
        else
        {
            for(int j=1;j<=n;j++)
              for(int i=head[j];i;i=a[i].nxt)
                if(block[j]!=block[a[i].to]) in[block[a[i].to]]++,out[block[j]]++;
            for(int i=1;i<=tot;i++)
            {
                if(!in[i]) numin++;
                if(!out[i]) numout++;
            }
            printf("%d\n",max(numin,numout));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值