忍者的关系是树形结构,所以一个节点只会对其祖先造成影响,所以我们可以在dfs的时候进行维护。
满意度的定义是派遣的忍者总数乘管理者的领导力水平,其中领导力水平就是我们dfs到的点的一个属性,所以我们只需要维护所能得到的最大忍者总数就好了。由于派遣忍者需要费用,所以我们可以贪心地在费用超出预算的时候扔掉费用最大的忍者,这个可以用堆解决;但是对于dfs到的节点,我们要合并其所有儿子的堆,所以要使用可并堆(左偏树或者斜堆等等)维护。
注意累加费用的时候可能会爆int,所以要将相关的改成long long。我的1A就这么没了桑心
CODE:
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=1e6+10;
struct node
{
int dis,id,size;
ll num,cost;
node *ch[2];
}pool[N],*t[N],*null;
struct edge
{
int nxt,to;
}a[N];
int head[N],lv[N];
int n,x,tot,num,root;
ll m,ans,y;
inline void readint(int &n)
{
n=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') n=n*10+c-48,c=getchar();
}
inline void readll(ll &n)
{
n=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') n=n*10+c-48,c=getchar();
}
inline ll max(const ll &a,const ll &b){return a>b?a:b;}
inline void add(int x,int y)
{
a[++num].nxt=head[x],a[num].to=y,head[x]=num;
}
inline void getnew(ll cost,int id)
{
node *now=pool+ ++tot;
now->ch[0]=now->ch[1]=null;
now->num=now->cost=cost,now->id=id;
now->dis=now->size=1;
t[id]=now;
}
node *merge(node *x,node *y)
{
if(x==null) return y;
if(y==null) return x;
if(x->num<y->num||(x->num==y->num&&x->id>y->id)) swap(x,y);
x->ch[1]=merge(x->ch[1],y);
if(x->ch[0]->dis<x->ch[1]->dis) swap(x->ch[0],x->ch[1]);
x->dis=x->ch[1]->dis+1;
x->cost=x->ch[0]->cost+x->ch[1]->cost+x->num;
x->size=x->ch[0]->size+x->ch[1]->size+1;
return x;
}
node *dfs(int now)
{
node *root=t[now];
for(int i=head[now];i;i=a[i].nxt)
root=merge(root,dfs(a[i].to));
while(root->cost>m) root=merge(root->ch[0],root->ch[1]);
ans=max(ans,1ll*root->size*lv[now]);
return root;
}
int main()
{
null=pool;
null->ch[0]=null->ch[1]=null;
null->dis=-1;
readint(n),readll(m);
for(int i=1;i<=n;i++)
{
readint(x),readll(y),readint(lv[i]),getnew(y,i);
if(x) add(x,i);
else root=i;
}
dfs(root);
printf("%lld",ans);
return 0;
}