折半查找,也称二分查找、二分搜索,是一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组已经为空,则表示找不到指定的元素。这种搜索算法每一次比较都使搜索范围缩小一半,其时间复杂度是O(logN)。
下面给出两种实现方式
使用循环
// 使用循环实现的二分查找
public static <T> int binarySearch(T[] x, T key, Comparator<T> comp) {
int low = 0;
int high = x.length - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
int cmp = comp.compare(x[mid], key);
if (cmp < 0) {
low= mid + 1;
}
else if (cmp > 0) {
high= mid - 1;
}
else {
return mid;
}
}
return -1;
}
使用递归
// 使用递归实现的二分查找
private static<T extends Comparable<T>> int binarySearch(T[] x, int low, int high, T key) {
if(low <= high) {
int mid = low + ((high -low) >> 1);
if(key.compareTo(x[mid])== 0) {
return mid;
}
else if(key.compareTo(x[mid])< 0) {
return binarySearch(x,low, mid - 1, key);
}
else {
return binarySearch(x,mid + 1, high, key);
}
}
return -1;
}
注:计算中间位置时不应该使用(high+ low) / 2的方式,因为加法运算可能导致整数越界,这里应该使用以下三种方式之一:low + (high - low) / 2或low + (high – low) >> 1或(low + high) >>> 1(>>>是逻辑右移,是不带符号位的右移)