- 博客(3)
- 收藏
- 关注
原创 算法--洛谷P6328我是仙人掌--BFS求最短路+bitset求点集
本文探讨了如何高效处理图中节点距离查询的问题。给定一个包含n个节点和m条边的图,以及p次查询,每次查询要求找出满足到某些节点距离小于等于给定值的节点数量。初始方法通过BFS计算节点间最短距离,并使用二维数组存储,但时间复杂度较高,导致超时。优化方案引入bitset数据结构,利用位运算高效存储和查询节点距离信息。具体实现中,通过BFS遍历图,记录每个节点到其他节点的距离,并使用bitset数组进行快速查询。最终,通过bitset的或运算,高效计算满足条件的节点数量,显著提升了查询效率。
2025-05-20 18:18:50
545
原创 机器学习--KNN算法学习笔记
本文详细介绍了KNN(K-Nearest-Neighbors)算法的基本原理及其在鸢尾花分类问题中的应用。KNN是一种有监督的机器学习算法,适用于简单的分类任务。文章以鸢尾花分类为例,讲解了如何通过计算数据点之间的距离,找到最近的K个邻居,并根据这些邻居的类别进行预测。文章还提供了C++代码实现,包括数据读取、训练集与测试集的划分、距离计算及预测过程。代码结构清晰,附有详细注释和样本数据,便于读者理解和实践。通过该实现,读者可以掌握KNN算法的底层原理,并应用于其他分类问题。
2025-05-17 12:05:01
707
原创 机器学习--KNN算法学习笔记
KNN算法(K-Nearest-Neighbors)是一种有监督的机器学习算法,常用于分类问题。以鸢尾花分类为例,算法通过计算待预测数据与训练集中每个样本的距离,找到距离最近的K个样本,并根据这K个样本的类别进行投票,最终确定待预测数据的类别。实现KNN算法的步骤包括:读取并存储数据、划分训练集和测试集、计算距离、进行预测并评估模型准确率。通过C++代码实现,可以完成数据的读取、随机划分、距离计算及分类预测,最终输出模型的准确率。KNN算法的核心思想是通过邻近样本的类别来推断未知样本的类别,适用于简单的分类
2025-05-16 15:25:09
1044
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人