再读SRGNN论文之GRU与RNN和LSTM

本文探讨了在深度学习推荐系统中,GRU相对于LSTM和RNN的优势。通过实例展示了GRU的效果,并分析了为何选用GRU。同时,文章提及了在实现过程中遇到的LSTM替换问题,以及会话图嵌入和内积运算在相似度计算中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hi主要是没太多时间用来思考,所以很多东西都不是太清楚,只会装逼,这样不好,要从理论/代码上理解到底说的是什么事情,这是科学问题:是什么和为什么?作为搬砖工还是有必要深入了解,不然真的只能搬砖了。可在我的主页搜索相关博文,不再挨个附上。【面试明明是技术面,却总是在问科学的问题,这很扯淡

For Recommendation in Deep learning QQ Group 102948747

For Visual in deep learning QQ Group 629530787

I'm here waiting for you

不接受这个网页的私聊/私信!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值