镜像二叉树和求二叉树最大深度(java)

文章介绍了如何使用递归方法解决两个二叉树问题:一是翻转(镜像)二叉树,二是计算二叉树的最大深度。对于翻转二叉树,通过交换节点的左右子树实现;对于最大深度,递归计算左右子树的高度并取最大值加1。

镜像二叉树。有些题目叫翻转二叉树。是同一个题。

题目描述:给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。
示例:
在这里插入图片描述
思路:
这题用递归就很简单,递归左树和右树时,将左右交换下,直接代码演示

* Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode invertTree(TreeNode root) {
        if(root == null){
            return null;
        }
        process(root);
        return root;
    }

    public TreeNode  process(TreeNode root){
        if(root == null){
            return null;
        }
       
        TreeNode left  = process(root.left);
        TreeNode right = process(root.right);
        root.left = right;
        root.right = left;
        return root;
    }
}

LeetCode 原题链接,可以复制代码进去测试

二叉树的最大深度

题目描述:
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例:

在这里插入图片描述

返回它的最大深度 3 。

思路:
使用递归去获取左树和右树的高度,取最大的加顶点1,就是最大高度。
代码如下:

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int maxDepth(TreeNode root) {
        if(root == null){
            return 0;
        }
        int left = maxDepth(root.left);
        int right = maxDepth(root.right);
        return Math.max(left,right)+1;
    }
}

leetcode 原题链接 可以打开测试下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值