leetcode739. 每日温度(单调栈-java)

文章介绍了LeetCode739题——每日温度的问题,给出了两种解法,包括暴力解法(超时)和一种高效的单调栈解法。单调栈解法利用栈的特性,实现了在给定温度数组中找到每个位置上一个更高温度的天数,有效降低了时间复杂度。

leetcode739. 每日温度

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/daily-temperatures

题目描述

给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升高,请在该位置用 0 来代替。

示例 1:
输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]

示例 2:
输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]

示例 3:
输入: temperatures = [30,60,90]
输出: [1,1,0]

解法一 暴力解

循环嵌套去判断,这是最容易想到的方法,但超出时间限制,提交不通过

    /**
     * 暴力解
     * @param temperatures
     * @return
     */
    public int[] dailyTemperatures2(int[] temperatures) {
        if (temperatures.length < 2){
            return new int[1];
        }
        int N = temperatures.length;
        int[]ans = new int[N];
        for (int i = 0; i < N;i++){
            for (int j = i + 1;j < N;j++){
                if (temperatures[j] > temperatures[i]){
                    ans[i] = j - i;
                    break;
                }
            }
        }

        return ans;
    }

解法二 单调栈

为了方便,我们令 temperatures 为 ts。
抽象题意为 : 求解给定序列中每个位置(右边)最近一个比其大的位置,可使用「单调栈」来进行求解。
具体的,我们可以从前往后处理所有的
,使用某类容器装载我们所有的「待更新」的位置(下标),假设当前处理到的是

若其比容器内的任意位置(下标)对应温度要低,其必然不能更新任何位置(下标),将其也加入容器尾部(此时我们发现,若有一个新的位置(下标)加入容器,其必然是当前所有待更新位置(下标)中的温度最低的,即容器内的温度单调递减);

若其价格高于容器内的任一位置(下标)对应温度,其能够更新容器位置(下标)的答案,并且由于我们容器满足单调递减特性,我们必然能够从尾部开始取出待更新位置来进行更新答案,直到处理完成或遇到第一个无法更新位置。

由于我们需要往尾部添加和取出元素,因此我们可以用数组来优化栈结构。

 /**
     * 单调栈
     * @param temperatures
     * @return
     */
    public int[] dailyTemperatures(int[] temperatures) {
        if (temperatures.length < 2){
            return new int[1];
        }
        int N = temperatures.length;
        int[]ans = new int[N];
        //用数组来优化栈
        int[]stack = new int[N];
        int stackSize = 0;
        for (int i = 0; i < N;i++){
            while (stackSize != 0 && temperatures[stack[stackSize - 1]] < temperatures[i]){
                int cur = stack[--stackSize];
                ans[cur] = i - cur;
            }
            stack[stackSize++] = i;
        }

        return ans;
    }

单调栈专题

单调栈的实现-单调递减栈和单调递增栈

leetcode1856. 子数组最小乘积的最大值

leetcode84. 柱状图中最大的矩形

leetcode.85. 最大矩形

leetcode42. 接雨水

每日温度问题是LeetCode Hot100榜单中的一个经典题目,主要目标是找出每一天之后第一个比当天温度高的天数。该问题非常适合使用单调来解决,因为单调可以高效处理“下一个更大元素”的问题类型。 ### 核心思路 单调的核心思想是维护一个结构,其中存储的是尚未找到下一个更高温度的天数下标。当遍历到某一天的温度时,如果当前温度高于顶下标所对应的温度,则说明找到了下一个更高温度,此时弹出顶下标并计算天数差。每处理完一个元素后,将当前下标压入中,等待后续更高温度来处理。遍历结束后,中剩余的下标对应的天数没有更高温度,结果数组中默认值为0。 ### Java实现 以下是完整的Java实现代码,包含详细注释: ```java import java.util.Stack; public class Solution { /** * 每日温度问题,使用单调 * @param temperatures 温度数组 * @return 每天距离下一个更高温度的天数 */ public int[] dailyTemperatures(int[] temperatures) { int n = temperatures.length; int[] answer = new int[n]; // 结果数组,默认初始化为0 Stack<Integer> stack = new Stack<>(); // 存放下标 for (int i = 0; i < n; i++) { // 如果当前温度高于顶所指的温度 while (!stack.isEmpty() && temperatures[i] > temperatures[stack.peek()]) { int prevIndex = stack.pop(); // 取出下标 answer[prevIndex] = i - prevIndex; // 计算天数差 } stack.push(i); // 当前下标入 } // 中剩余下标默认答案0 return answer; } } ``` ### 时间复杂度分析 该算法的时间复杂度为O(n),其中n表示温度数组的长度。每个元素最多进和出各一次,因此整体时间复杂度是线性的,效率非常高。 ### 空间复杂度分析 空间复杂度为O(n),主要是由于的存储开销。在最坏情况下,所有元素都未找到下一个更高温度,此时的大小为n。 ### 形象理解 中存储的是“还没找到更高温度的那些天”。每次遇到更高温度时,就弹出顶下标并计算答案。这种方法可以确保每个元素都被处理一次,避免了重复计算[^1]。 ### 小结 每日温度问题通过单调的实现,能够高效地解决“下一个更大元素”类问题。这种解法不仅代码简洁,而且时间复杂度和空间复杂度都控制在合理范围内,非常适合处理大规模数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值