Stochastic Process 2nd (Sheldon M.Ross)

本文介绍了概率论的基础知识,包括概率的三个公理、事件的简单推论、递增和递减序列事件以及博雷尔-坎特利引理。通过对事件序列的极限操作,阐述了概率的性质和计算,如独立事件的无限序列及其概率极限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1 Probability

1.1 Three Axioms of Probability

For each event E E E of the sample space S S S a number P ( E ) P(E) P(E) is de fined and satisfies the following three axioms:

  • Axiom 1 0 ⩽ P ( E ) ⩽ 1 0 \leqslant P(E) \leqslant 1 0P(E)1
  • Axiom 2 P ( S ) = 1 P(S) = 1 P(S)=1
  • Axiom 3 For any sequence of events E 1 E_1 E1 , E 2 E_2 E2 , … that are mutually exclusive, that is, events for which E i E j = Φ E_iE_j=\varPhi EiEj=Φ when i ≠ j i \ne j i=j (where the Φ \varPhi Φ is the null set),
    P ( ⋃ i = 1 ∞ E i ) = ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) =\sum_{i=1}^{\infty}{P\left( E_i \right)} P(i=1Ei)=i=1P(Ei)

1.2 Simple Consequences of Axioms

We refer to P ( E ) P(E) P(E) as the probability of the event of E, and we can deduce some simple consequences of three axioms.

  1. If E ⊂ F E\subset F EF, then P ( E ) ⩽ P ( F ) P(E) \leqslant P(F) P(E)P(F).
  2. P ( E c ) = 1 − P ( E ) P(E^c) = 1- P(E) P(Ec)=1P(E), where E c E^c Ec is the complement of E.
  3. P ( ⋃ i = 1 n E i ) = ∑ i = 1 n P ( E i ) P\left( \bigcup_{i=1}^{n}{E_i} \right) =\sum_{i=1}^{n}{P\left( E_i \right)} P(i=1nEi)=i=1nP(Ei), when the E i E_i Ei are mutually exclusive.
  4. P ( ⋃ i = 1 ∞ E i ) ⩽ ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) \leqslant \sum_{i=1}^{\infty}{P\left( E_i \right)} P(i=1Ei)i=1P(Ei)

1.3 Increasing or Decreasing Sequence of Events

  • If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} { En,n1} is an increasing sequence of events, then we define a new event, denoted by lim ⁡ n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n nlimEn by
    lim ⁡ n → ∞ E n = ⋃ i = 1 ∞ E i      w h e n   E n ⊂ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\,\,when\,E_n\subset E_{n+1},n\geqslant 1 nlimEn=i=1EiwhenEnEn+1,n1increasing sequence of events
  • If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} { En,n1} is a decreasing sequence of events, then we define a new event, denoted by lim ⁡ n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n nlimEn by
    lim ⁡ n → ∞ E n = ⋃ i = 1 ∞ E i     w h e n   E n ⊃ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\, when\,E_n\supset E_{n+1},n\geqslant 1 nlimEn=i=1EiwhenEnEn+1,n1decreasing sequence of events

1.4 Proposition 1

If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} { En,n1} is either an increasing or decreasing sequence of events, then
lim ⁡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值