Chapter 1 Preliminaries
1 Probability
1.1 Three Axioms of Probability
For each event E E E of the sample space S S S a number P ( E ) P(E) P(E) is de fined and satisfies the following three axioms:
- Axiom 1 0 ⩽ P ( E ) ⩽ 1 0 \leqslant P(E) \leqslant 1 0⩽P(E)⩽1
- Axiom 2 P ( S ) = 1 P(S) = 1 P(S)=1
- Axiom 3 For any sequence of events E 1 E_1 E1 , E 2 E_2 E2 , … that are mutually exclusive, that is, events for which E i E j = Φ E_iE_j=\varPhi EiEj=Φ when i ≠ j i \ne j i=j (where the Φ \varPhi Φ is the null set),
P ( ⋃ i = 1 ∞ E i ) = ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) =\sum_{i=1}^{\infty}{P\left( E_i \right)} P(i=1⋃∞Ei)=i=1∑∞P(Ei)
1.2 Simple Consequences of Axioms
We refer to P ( E ) P(E) P(E) as the probability of the event of E, and we can deduce some simple consequences of three axioms.
- If E ⊂ F E\subset F E⊂F, then P ( E ) ⩽ P ( F ) P(E) \leqslant P(F) P(E)⩽P(F).
- P ( E c ) = 1 − P ( E ) P(E^c) = 1- P(E) P(Ec)=1−P(E), where E c E^c Ec is the complement of E.
- P ( ⋃ i = 1 n E i ) = ∑ i = 1 n P ( E i ) P\left( \bigcup_{i=1}^{n}{E_i} \right) =\sum_{i=1}^{n}{P\left( E_i \right)} P(⋃i=1nEi)=∑i=1nP(Ei), when the E i E_i Ei are mutually exclusive.
- P ( ⋃ i = 1 ∞ E i ) ⩽ ∑ i = 1 ∞ P ( E i ) P\left( \bigcup_{i=1}^{\infty}{E_i} \right) \leqslant \sum_{i=1}^{\infty}{P\left( E_i \right)} P(⋃i=1∞Ei)⩽∑i=1∞P(Ei)
1.3 Increasing or Decreasing Sequence of Events
- If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {
En,n⩾1} is an increasing sequence of events, then we define a new event, denoted by lim n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n n→∞limEn by
lim n → ∞ E n = ⋃ i = 1 ∞ E i w h e n E n ⊂ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\,\,when\,E_n\subset E_{n+1},n\geqslant 1 n→∞limEn=i=1⋃∞EiwhenEn⊂En+1,n⩾1 - If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {
En,n⩾1} is a decreasing sequence of events, then we define a new event, denoted by lim n → ∞ E n \underset{n\rightarrow \infty}{\lim}E_n n→∞limEn by
lim n → ∞ E n = ⋃ i = 1 ∞ E i w h e n E n ⊃ E n + 1 , n ⩾ 1 \underset{n\rightarrow \infty}{\lim}E_n=\bigcup_{i=1}^{\infty}{E_i}\,\,\, when\,E_n\supset E_{n+1},n\geqslant 1 n→∞limEn=i=1⋃∞EiwhenEn⊃En+1,n⩾1
1.4 Proposition 1
If { E n , n ⩾ 1 } \left\{ E_n,n\geqslant 1 \right\} {
En,n⩾1} is either an increasing or decreasing sequence of events, then
lim