概述
理论上来说,参数越多的模型复杂度越高、容量越大,这意味着它能完成更复杂的学习任务。但复杂模型的训练效率低,易陷入过拟合。随着云计算、大数据时代的到来,计算能力的大幅提高可以缓解训练的低效性,训练数据的大幅增加可以降低过拟合风险。因此,以深度学习(Deep Learning,DL)为代表的复杂模型迎来关注。
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:
(1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)
(2)基于多层神经元的自编码神经网络,包括自编码(Auto encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)
(3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)
通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。
以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向