函数
函数的定义
- 在这个章节中学习了一些基本的概念,提出了新的定义,上域,上域就是是定义域的取值集合,一般来说是所有实数集。另外的有颜色中选取,动物中选取等等,这些定义也重新定义了函数不仅仅局限于数学符号,他更是一个广泛的过程
- 对函数进行了重新定义,使用 f ( x ) = x 2 f(x)=x^2 f(x)=x2来定义函数,但是这个过程中要注意的是 f f f是一个函数,而 f ( x ) f(x) f(x)则是将函数应用于 x x x之后得到的结果,这一点在计算机语言中体现最为明显。
定义域
- 在这个章节中强调的是一些表示方法,这种方法是*(-8,13){2}*,他表示位于-8到13中但是不包括2的定义域。
- 三种常见定义域取值:
- 分母不为0
- 不给负数取平方根,或者是四次方根等
- 对数定义域在(0,+ ∞ \infty ∞)
函数的检验
垂直检验
- 对于函数的图像,首先要判别是否为函数。特殊的方法是垂直检验,即判别函数是否有多条垂线相交于图像。圆就不是一个函数。
反函数
- 若存在反函数,和原函数对应着 y = x y=x y=x对应。
- 如果对于 f ( x ) = x 2 f(x)=x^2 f(x)=x2满足条件的反函数可能有 f − 1 ( x ) = y f^{-1}(x)=y f−1(x)=y或者是 f − 1 ( x ) = − y f^{-1}(x)=-y f−1(x)=−y,这就有了接下来的水平检验。
水平检验
- 和垂直检验相对应,检测水平线和函数相交区域内仅有一个 x x x与之对应。例如 f ( x ) = x 2 f(x)=x^2 f(x)=x2没有反函数,而 f ( x ) = x 3 f(x)=x^3 f(x)=x3存在。
- 若水平检验失败并且还想得到函数,就需要进行 x x x的取舍,即定义域的取舍,前提是它是一个函数。
反函数的反函数
- 对于不限制定义域的情况 f ( f − 1 y ) = y f(f^{-1}y)=y f(f−1y)=y, f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f−1(f(x))=x。
- 而对于定义域限制情况,须在允许定义域之内才满足。
函数的复合
- 注意区分函数相称和函数复合,相乘计为 f = g h f=gh f=gh,而函数复合计为 f = g ∘ h f=g\circ h f=g∘h。
多项式定义
- 对于多项式,即为 f ( x ) = a 0 x 0 + a 1 x 1 + a 2 x 2 + . . . f(x)=a_0 x^0+a_1 x^1+a_2 x^2+... f(x)=a0x0+a1x1+a2x2+...
奇函数和偶函数
- 要注意的是唯一的既奇又偶的函数 f ( x ) = 0 f(x)=0 f(x)=0。证明位于书中P12页
- 两个奇函数之积为偶函数,两个偶函数之积也为偶函数,证明在P14页
线性函数图像
- 注意点斜式,牢记。具体方法在P15页:
- 通过一点加斜率
- 通过两点先求斜率,再用一点加斜率
常见函数的图像
- 多项式中左右两端的走势判断,通过首相系数判断,如 5 x 4 + 4 x 3 5x^4+4x^3 5x4+4x3,因为首项系数占比大。
- 多用二次函数写出配方式,因为配方式应用较广范
- 指数函数和对数函数互为反函数,
绝对值函数
把握这两点有助于更好理解绝对值函数
- 绝对值函数实际上就是数轴上0到x之间的距离。
- ∣ x − y ∣ |x-y| ∣x−y∣就是数轴上x,y之间的距离