第一章:函数、图像和直线

函数


函数的定义

  • 在这个章节中学习了一些基本的概念,提出了新的定义,上域,上域就是是定义域的取值集合,一般来说是所有实数集。另外的有颜色中选取,动物中选取等等,这些定义也重新定义了函数不仅仅局限于数学符号,他更是一个广泛的过程
  • 对函数进行了重新定义,使用 f ( x ) = x 2 f(x)=x^2 f(x)=x2来定义函数,但是这个过程中要注意的是 f f f是一个函数,而 f ( x ) f(x) f(x)则是将函数应用于 x x x之后得到的结果,这一点在计算机语言中体现最为明显。

定义域

  • 在这个章节中强调的是一些表示方法,这种方法是*(-8,13){2}*,他表示位于-8到13中但是不包括2的定义域。
  • 三种常见定义域取值:
    • 分母不为0
    • 不给负数取平方根,或者是四次方根等
    • 对数定义域在(0,+ ∞ \infty )

函数的检验

垂直检验

  • 对于函数的图像,首先要判别是否为函数。特殊的方法是垂直检验,即判别函数是否有多条垂线相交于图像。圆就不是一个函数。

反函数

  • 若存在反函数,和原函数对应着 y = x y=x y=x对应。
  • 如果对于 f ( x ) = x 2 f(x)=x^2 f(x)=x2满足条件的反函数可能有 f − 1 ( x ) = y f^{-1}(x)=y f1(x)=y或者是 f − 1 ( x ) = − y f^{-1}(x)=-y f1(x)=y,这就有了接下来的水平检验。

水平检验

  • 和垂直检验相对应,检测水平线和函数相交区域内仅有一个 x x x与之对应。例如 f ( x ) = x 2 f(x)=x^2 f(x)=x2没有反函数,而 f ( x ) = x 3 f(x)=x^3 f(x)=x3存在。
  • 请添加图片描述
    请添加图片描述
  • 若水平检验失败并且还想得到函数,就需要进行 x x x的取舍,即定义域的取舍,前提是它是一个函数。

反函数的反函数

  • 对于不限制定义域的情况 f ( f − 1 y ) = y f(f^{-1}y)=y f(f1y)=y, f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x
  • 而对于定义域限制情况,须在允许定义域之内才满足。

函数的复合

  • 注意区分函数相称和函数复合,相乘计为 f = g h f=gh f=gh,而函数复合计为 f = g ∘ h f=g\circ h f=gh

多项式定义

  • 对于多项式,即为 f ( x ) = a 0 x 0 + a 1 x 1 + a 2 x 2 + . . . f(x)=a_0 x^0+a_1 x^1+a_2 x^2+... f(x)=a0x0+a1x1+a2x2+...

奇函数和偶函数

  • 要注意的是唯一的既奇又偶的函数 f ( x ) = 0 f(x)=0 f(x)=0。证明位于书中P12
  • 两个奇函数之积为偶函数,两个偶函数之积也为偶函数,证明在P14

线性函数图像

  • 注意点斜式,牢记。具体方法在P15页:
    • 通过一点加斜率
    • 通过两点先求斜率,再用一点加斜率

常见函数的图像

  • 多项式中左右两端的走势判断,通过首相系数判断,如 5 x 4 + 4 x 3 5x^4+4x^3 5x4+4x3,因为首项系数占比大。
  • 多用二次函数写出配方式,因为配方式应用较广范
  • 指数函数和对数函数互为反函数,

绝对值函数

把握这两点有助于更好理解绝对值函数

  • 绝对值函数实际上就是数轴上0到x之间的距离。
  • ∣ x − y ∣ |x-y| xy就是数轴上x,y之间的距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值