【模拟赛】8.22模拟赛T2:金字塔

这道题实际上就是让你找出一个给定长宽的矩形,再从里面挖掉一个给定长宽的矩形,使剩下部分的平均值最大。

首先,平均值最大就等于矩形内的总和最大,那么意味着我们要在枚举大矩形位置的时候,在logN~log 2 2 N的复杂度内计算出挖掉的小矩形内总和的最大值。

如果我们使用二维前缀和来表示小矩形内部总和,那么以 i,j 作为左上角的小矩形内总和应该如下表示:
S(i,j) = sum[ i+c-1][ j+d-1] - sum[ i+c-1][ j-1] - sum[ i-1][ j+d-1] + sum[ i-1][ j-1]
那么我们就可以在预处理时计算出每一个S(i,j)的值,就可以将问题转化为一个求矩形中最值的问题。那这个显然就可以用二维ST表来维护了。

(顺便提一句,如果ST表开成四维的会爆空间,所以只能用 sum[i][j][k]表示以 i,j 为左上角,边长为 2 k k 的正方形里的最值)

下面是代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int log2[1005],ans,ans2,n,m,a,b,c,d,map[1005][1005],sum[1005][1005],f[1005][1005][11];
int cal(int i,int j,int k,int l){return sum[k][l]-sum[k][j-1]-sum[i-1][l]+sum[i-1][j-1];}
void init()
{
    for(int i=2;i+c-1<=n-1;i++)
        for(int j=2;j+d-1<=m-1;j++)
            f[i][j][0]=cal(i,j,i+c-1,j+d-1);
    for(int k=1;k<=10;k++)
        for(int i=2;i+c-1<=n-1;i++)
            for(int j=2;j+d-1<=m-1;j++)
                if((1<<(k-1))<=c && (1<<(k-1))<=d)
                {
                    f[i][j][k]=min(f[i][j][k],f[i][j][k-1]);
                    f[i][j][k]=min(f[i][j][k],f[i+c-(1<<(k-1))][j][k-1]);
                    f[i][j][k]=min(f[i][j][k],f[i][j+d-(1<<(k-1))][k-1]);
                    f[i][j][k]=min(f[i][j][k],f[i+c-(1<<(k-1))][j+d-(1<<(k-1))][k-1]);
                }
}
int query(int i,int j,int k,int l)
{
    int t=log2[min(k-i,l-j)];
    return min(min(f[i][j][t],f[k-(1<<t)+1][j][t]),min(f[i][l-(1<<t)+1][t],f[k-(1<<t)+1][l-(1<<t)+1][t]));
}
int ques(int i,int j,int k,int l)
{
    int sx=k-i,sy=l-j;
    if(sy>sx*2)
        return min(query(i,j,k,j+sx),ques(i,j+sx+1,k,l));
    if(sx>sy*2)
        return min(query(i,j,i+sy,l),ques(i+sy+1,j,k,l));
    return query(i,j,k,l);
}
int main()
{
    freopen("pyramid.in","r",stdin);
    freopen("pyramid.out","w",stdout);
    int x,y;
    scanf("%d%d%d%d%d%d",&m,&n,&b,&a,&d,&c);
    for(int i=2;i<=1000;i++)
        log2[i]=log2[i/2]+1;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&map[i][j]),sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+map[i][j];
    init();
    for(int i=1;i+a-1<=n;i++)
        for(int j=1;j+b-1<=m;j++)
        {
            int now=ques(i+1,j+1,i+a-c-1,j+b-d-1),nex=cal(i,j,i+a-1,j+b-1)-now;
            if(nex>ans)
                x=i,y=j,ans=nex,ans2=now;
        }
    printf("%d %d\n",y,x);
    for(int i=x+1;i+c<=x+a-1;i++)
        for(int j=y+1;j+d<=y+b-1;j++)
            if(cal(i,j,i+c-1,j+d-1)==ans2)
                {printf("%d %d",j,i); return 0;}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值