这道题实际上就是让你找出一个给定长宽的矩形,再从里面挖掉一个给定长宽的矩形,使剩下部分的平均值最大。
首先,平均值最大就等于矩形内的总和最大,那么意味着我们要在枚举大矩形位置的时候,在logN~log 2 2 N的复杂度内计算出挖掉的小矩形内总和的最大值。
如果我们使用二维前缀和来表示小矩形内部总和,那么以 i,j 作为左上角的小矩形内总和应该如下表示:
S(i,j) = sum[ i+c-1][ j+d-1] - sum[ i+c-1][ j-1] - sum[ i-1][ j+d-1] + sum[ i-1][ j-1]
那么我们就可以在预处理时计算出每一个S(i,j)的值,就可以将问题转化为一个求矩形中最值的问题。那这个显然就可以用二维ST表来维护了。
(顺便提一句,如果ST表开成四维的会爆空间,所以只能用 sum[i][j][k]表示以 i,j 为左上角,边长为 2 k k 的正方形里的最值)
下面是代码:
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int log2[1005],ans,ans2,n,m,a,b,c,d,map[1005][1005],sum[1005][1005],f[1005][1005][11];
int cal(int i,int j,int k,int l){return sum[k][l]-sum[k][j-1]-sum[i-1][l]+sum[i-1][j-1];}
void init()
{
for(int i=2;i+c-1<=n-1;i++)
for(int j=2;j+d-1<=m-1;j++)
f[i][j][0]=cal(i,j,i+c-1,j+d-1);
for(int k=1;k<=10;k++)
for(int i=2;i+c-1<=n-1;i++)
for(int j=2;j+d-1<=m-1;j++)
if((1<<(k-1))<=c && (1<<(k-1))<=d)
{
f[i][j][k]=min(f[i][j][k],f[i][j][k-1]);
f[i][j][k]=min(f[i][j][k],f[i+c-(1<<(k-1))][j][k-1]);
f[i][j][k]=min(f[i][j][k],f[i][j+d-(1<<(k-1))][k-1]);
f[i][j][k]=min(f[i][j][k],f[i+c-(1<<(k-1))][j+d-(1<<(k-1))][k-1]);
}
}
int query(int i,int j,int k,int l)
{
int t=log2[min(k-i,l-j)];
return min(min(f[i][j][t],f[k-(1<<t)+1][j][t]),min(f[i][l-(1<<t)+1][t],f[k-(1<<t)+1][l-(1<<t)+1][t]));
}
int ques(int i,int j,int k,int l)
{
int sx=k-i,sy=l-j;
if(sy>sx*2)
return min(query(i,j,k,j+sx),ques(i,j+sx+1,k,l));
if(sx>sy*2)
return min(query(i,j,i+sy,l),ques(i+sy+1,j,k,l));
return query(i,j,k,l);
}
int main()
{
freopen("pyramid.in","r",stdin);
freopen("pyramid.out","w",stdout);
int x,y;
scanf("%d%d%d%d%d%d",&m,&n,&b,&a,&d,&c);
for(int i=2;i<=1000;i++)
log2[i]=log2[i/2]+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&map[i][j]),sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+map[i][j];
init();
for(int i=1;i+a-1<=n;i++)
for(int j=1;j+b-1<=m;j++)
{
int now=ques(i+1,j+1,i+a-c-1,j+b-d-1),nex=cal(i,j,i+a-1,j+b-1)-now;
if(nex>ans)
x=i,y=j,ans=nex,ans2=now;
}
printf("%d %d\n",y,x);
for(int i=x+1;i+c<=x+a-1;i++)
for(int j=y+1;j+d<=y+b-1;j++)
if(cal(i,j,i+c-1,j+d-1)==ans2)
{printf("%d %d",j,i); return 0;}
}