迷宫花坛(garden)

51 篇文章 0 订阅
31 篇文章 0 订阅

题目描述

圣玛格丽特学园的一角有一个巨大、如迷宫般的花坛。大约有一个人这么高的大型花坛,做成迷宫的形状,深受中世纪贵族的喜爱。维多利加的小屋就坐落在这迷宫花坛的深处。某一天早晨,久城同学要穿过这巨大的迷宫花坛,去探望感冒的维多利加。

整个迷宫可以用N个路口与M条连接两个不同路口的无向通道来描述。路口被标号为1到N,每条通道有各自的长度。整个迷宫一定是连通的,迷宫中可能存在若干个环路,但是,出于美观考虑,每个路口最多只会属于一个简单环路。例如,图1所示的迷宫是非常美观的,但图2则不符合我们的描述,因为3号路口同属于两个简单环。

你需要回答多个这样的询问:假如久城处在路口x,维多利加的小屋处在路口y,久城最短需要走多少距离才能到达小屋?

输入

第一行2个整数N,M,表示迷宫花坛的路口数和通道数;

接下来N行,每行3个整数x,y,z,描述一条连接路口x与路口y,长度为z的通道;

再接下来1行包含一个整数Q,表示询问数量;

之后Q行,每行2个整数x,y,描述一个询问。
输出

对于每个询问输出一行一个整数,表示最短距离。
输入样例

4 4
1 2 1
2 3 2
1 3 2
3 4 1
2
2 4
1 3
输出样例

3
2
说明

对于30%的数据,N≤100;

另有30%的数据,保证N=M;

对于100%的数据,1≤N≤100,000,Q≤200,000,1≤x,y≤N,1≤z≤1000.

.
.
.
.
.
.
分析
主要分成 lca 在环上和不在环上,先缩环(环上的点直接连向最高点),那么不在环上的 lca 就跟在树上一样求法;
在环上的话就先求出环外部分,再计算环内距离;
所以一遍 spfa 求从根出发的最短路,再一遍 dfs 求 dfs 序的 dis ,用来处理环上距离,然后 bfs 计算深度用来倍增求 lca,然后分类求答案即可;
注意边数就是点的4倍,还要算上缩环时连的边。

.
.
.
.
.
.
90分程序:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
using namespace std;

int n,m,Q,head[1000005],cnt=1,dis[1000005],dist[1000005],tj,col[1000005],tot,dfn[1000005];
int fa[1000005],len[1000005],f[100005][20],dep[1000005];
bool del[4000005],vis[1000005];

queue<int>q;

struct edge
{
    int to,next,w;
}a[4000005];

inline int read(){
   int s=0,w=1;
   char ch=getchar();
   while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
   while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
   return s*w;
}


void add(int x,int y,int z)
{
	a[++cnt].to=y;a[cnt].next=head[x];a[cnt].w=z;head[x]=cnt;
}

int check(int x)
{
	return x<0?-x:x;
}

void spfa()
{
    memset(dist,0x3f,sizeof(dist));
    memset(vis,0,sizeof(vis));
    dist[1]=0;
	q.push(1);
	vis[1]=1;
    while (q.size())
    {
        int x=q.front();
		q.pop();
		vis[x]=0;
        for (int i=head[x];i;i=a[i].next)
        {
        	int u=a[i].to;
        	if (dist[u]>dist[x]+a[i].w)
            {
                dist[u]=dist[x]+a[i].w;
                if (!vis[u])
                {
                	vis[u]=1;
					q.push(u);
                }
            }
        }
    }
}

void make(int x,int e)
{
    int i,y=x;
	x=a[e].to;
    len[++tj]+=a[e].w;
	col[y]=tj;
	del[e]=del[e^1]=1;
    add(x,y,0);
	add(y,x,0);
    for (i=fa[y];(y=a[i^1].to)!=x;i=fa[y])
    {
        len[tj]+=a[i].w;
		col[y]=tj;
        del[i]=del[i^1]=1;
        add(x,y,0);
		add(y,x,0);
    }
    col[x]=tj;
	len[tj]+=a[i].w;
}

void dfs(int x)
{
    dfn[x]=++tot;
    for (int i=head[x];i;i=a[i].next)
    {
    	int u=a[i].to;
        if (!dfn[u])
        {
            fa[u]=i;
			dis[u]=dis[x]+a[i].w;
            dfs(u);
        } else
		if (dfn[u]<dfn[x]&&fa[x]!=(i^1)) make(x,i);
    }
}

void bfs()
{
    while (q.size()) q.pop();
    memset(vis,0,sizeof(vis));
    vis[1]=1;
	q.push(1);
	dep[1]=1;
    while (q.size())
    {
        int x=q.front();
		q.pop();
        for (int i=head[x];i;i=a[i].next)
        {
        	int u=a[i].to;
            if (vis[u]||del[i]) continue;
            vis[u]=1;
			dep[u]=dep[x]+1;
			f[u][0]=x;
            for (int j=1;j<=15;j++)
				f[u][j]=f[f[u][j-1]][j-1];
            q.push(u);
        }
    }
}

int lca(int x,int y)
{
    if (dep[x]<dep[y]) swap(x,y);
    int a=x,b=y,k=dep[x]-dep[y];
    for (int i=0;i<=15;i++)
    	if (k&(1<<i)) x=f[x][i];
    if (x==y) return dist[a]-dist[b];
    for (int i=15;i>=0;i--)
        if (f[x][i]!=f[y][i])
        {
        	x=f[x][i];
			y=f[y][i];
        }
    if (col[x]&&col[x]==col[y])
    {
        int l=check(dis[x]-dis[y]);
        return dist[a]-dist[x]+dist[b]-dist[y]+min(l,len[col[x]]-l); 
        
    }
    return dist[a]+dist[b]-2*dist[f[x][0]];
}

int main()
{
    n=read();m=read();
    for (int i=1;i<=m;i++)
    {
    	int x,y,z;
        x=read();y=read();z=read();
        add(x,y,z);
		add(y,x,z);
    }
    spfa();
    dfs(1);
    bfs();
    scanf("%d",&Q);
    for (int i=1;i<=Q;i++)
    {
    	int x,y;
        x=read();y=read();
        printf("%d\n",lca(x,y));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值