题意
当原始数列给出后,求出最长的不下降数列的长度。
分析
f[i]表示第i数为起点到第n个数的最长不下降长度(倒推法)。
F[i]= max{1, F[j] + 1} (j = i+1…n, 且A[i] < A[j])。
F[n]=1;
最后一个循环,找出f[i]中最大的那一个。
var
max,n,i,j,l:longint;
f,a:array[1..2000]of longint;
begin
readln(n);
for i:=1 to n do
read(a[i]);
f[n]:=1;
for i:=n-1 downto 1 do
begin
l:=1;
for j:=i+1 to n do
if (a[i]<a[j])and(f[j]+1>l) then l:=f[j]+1;
f[i]:=l;
end;
l:=0;
for i:=1 to n do
if f[i]>l then l:=f[i];
write(l);
end.