Description
在一个平面上有n个矩形。每个矩形的边都平行于坐标轴并且都具有值为整数的顶点。我们用如下的方式来定义块。
每一个矩形都是一个块。
如果两个不同的矩形有公共线段,那么它们就组成了一个新的块来覆盖它们原来的两个块。
例子:
在图1中的矩形组成了两个不同的块。
写一个程序:
从文件PRO.IN中读入矩形的个数以及它们的顶点。
找出这些矩形形成的不同的块的个数。
将结果写入文件PRO.OUT。
Input
在输入文件PRO.IN的第一行又一个整数n,1 <= n <=7000,表示矩形的个数。接下来的n行描述矩形的顶点,每个矩形用四个数来描述:左下顶点坐标(x,y)与右上顶点坐标(x,y)。每个矩形的坐标都是不超过10000的非负整数。
Output
在文件PRO.OUT的第一行应当仅有一个整数—表示由给定矩形组成的不同的块的个数。
Sample Input
9
0 3 2 6
4 5 5 7
4 2 6 4
2 0 3 2
5 3 6 4
3 2 5 3
1 4 4 7
0 0 1 4
0 0 4 1
Sample Output
2
分析
1.判断两两矩形是否有重合部分。
2.有就做并查集,合并成一个集合。
3.for一次判断有多少个集合。
程序:
var
f,x,y,p,q:array [0..8000] of longint;
i,j,n,ans,k,l:longint;
function find(c:longint):longint;
begin
if f[c]=c then exit(c);
f[c]:=find(f[c]);
exit(f[c]);
end;
begin
readln(n);
for i:=1 to n do
f[i]:=i;
for i:=1 to n do
begin
readln(x[i],y[i],p[i],q[i]);
for j:=1 to i-1 do
if (p[i]>=x[j])and(p[j]>=x[i])and((q[i]>=y[j])and(q[j]>=y[i]))and(((p[i]<>x[j])and(p[j]<>x[i]))or((q[i]<>y[j])and(q[j]<>y[i]))) then
if find(i)<>find(j) then f[find(i)]:=find(j);
end;
for i:=1 to n do
if f[i]=i then inc(ans);
writeln(ans);
end.