题目描述
无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值。
请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?
输入格式:
输入文件名为link .in。
第一行包含1 个整数n 。
接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。
最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。
输出格式:
输出文件名为link .out 。
输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值
和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007 取余。
数据规模
n<=2*10^6
分析
首先我们发现,联通,n-1条边,这不是棵无向树嘛
第一次做树形DP好兴奋
然后看了看题解
发现是一道树形的东东,至于是不是DP。。应该不是吧,虽然标题打的树形DP (总之以后要学就对了)
然后这题我们发现距离为2的点有两种情况:
1、爷爷和孙子的情况,这种比较好处理,只要DFS多加个gf记录爷爷,然后乘一乘,加一加,判一判就好(说的简单)
注意事项:爷爷和孙子是双向关系,就是爷爷也可以当孙子的孙子的,所以联合权值务必乘2,不要问我怎么知道的
2、兄弟,这个就比较难处理了,因为显然不能暴力枚举兄弟否则超时
然后我们发现兄弟的联合权值最大的情况也就是兄弟中最大的和次大的相乘,这样就只用记录最大值和次大值即可
总和其实也不难,我们发现是这样的:w[i]*w[i]+w[i]*w[j]+w[i]*w[k]
+w[j]*w[j]+w[j]*w[i]+w[j]*w[k]
+w[k]*w[k]+w[k]*w[i]+w[k]*w[j]
乘法结合律:
w[i]×(w[i]+w[j]+w[k])+w[j]×(w[i]+w[j]+w[k])+w[k]×(w[i]+w[j]+w[k])
再简化:
(w[i]+w[j]+w[k])*(w[i]+w[j]+w[k])
发现没有,就是兄弟的总和的平方!然而不难发现,w[x]*w[x]的情况是非法的,所以还要多定一个变量来储存这种情况的总和,于是最后表达为:
(w[i]+w[j]+w[k])²-∑i,k w[x]²
就这样啦!
#include <iostream>
#include <cstdio>
using namespace std;
int nex[4000001],lis[4000001],u[2000001],v[2000001],w[2000001];
int n,i,j,ma,ass;
void init()
{
scanf("%d",&n);
for (i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
j++;
nex[j]=lis[x];
lis[x]=j;
u[j]=x;
v[j]=y;
j++;
nex[j]=lis[y];
lis[y]=j;
u[j]=y;
v[j]=x;
}
for (i=1;i<=n;i++)
scanf("%d",&w[i]);
}
void dfs(int s,int f,int gf)
{
int i=lis[s],mx1=0,mx2=0;
long long su1=0,su2=0;
if (gf!=0)
{
ass=(ass+w[s]*w[gf]*2%10007)%10007;
ma=max(ma,w[s]*w[gf]);
}
while (i!=0)
{
if (v[i]!=f)
{
int q=w[v[i]];
dfs(v[i],s,f);
if (q>mx1)
{
mx2=mx1;
mx1=q;
}
else
if (q>mx2)
mx2=q;
su1=(su1+q)%10007;
su2=(su2+q*q%10007)%10007;
}
i=nex[i];
}
ass=(ass+su1*su1%10007-su2+10007)%10007;
ma=max(ma,mx1*mx2);
}
int main()
{
init();
dfs(1,0,0);
printf("%d %d",ma,ass);
}